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     Summary of Causes: 
The interplay of the following five forces, all linked to 
the misperception, misunderstanding, and hiding of the 
risks of consequential low probability events (Black 
Swans). 

 I-CAUSES 

1) Increase in hidden risks of low probability 
events (tail risks) across all aspects of economic life, 
not just banking;  while tail risks are not possible to 
price, neither mathematically nor empirically. The same 
nonlinearity came from the increase in debt, operational 
leverage, and the use of complex derivatives. 

 

a- The author has shown that it is impossible 
to measure the risks in the tails of the 
distributioni. The errors swell in proportion to 
the remoteness of the event. Small variations 
in input, smaller than any uncertainty we have 
in estimation of parameters, assuming 
generously one has the right model, can 
underestimate the probability of events called 
of "10 sigma" (that is, 10 standard deviations) 
by close to a trillion times —a fact that has 
been (so far) strangely ignored by the finance 
and economics establishment. 

b- Exposures have been built in the "fourth 
quadrant" ii , where errors are both 
consequential and impossible to price and 
vulnerability to these errors is large. 

c- Fragility in the Fourth Quadrant can be re-
expressed as concavity to errors, where losses 
from uncertain events vastly exceed possible 
profits from it, the equivalent of "short 
volatility". These exposures have been 
increasing geometrically. 

 

2) Asymmetric and 
flawed incentives that favor risk hiding in the 
tails, two flaws in the compensation methods, based 
on cosmetic earnings not truly risk-adjusted ones a) 
asymmetric payoff: upside, never downside (free 
option); b) flawed frequency: annual compensation for 
risks that blow-up every few years, with absence of 
claw-back provisions. 

 

a- Misunderstanding of elementary notion of 
probabilistic payoffs across economic life. The 
general public fails to notice that a manager 
"paid on profits" is not really "paid on profits" 
in the way it is presented and not 
compensated in the same way as the owner of 
a business given the absence of negative 
payment on losses (the fooled by randomness 
argument). States of the world in which there 
can be failure are ignored —"probabilistic 
blindness". This asymmetry is called the 
"manager option", or the "free option", as it 
behaves exactly like a call option on the 
company granted by the shareholders, for free 
or close to little compensation. Thanks to the 
bailout of 2008-2009 (TARP), banks used 
public funds to generate profits, and 
compensated themselves generously in the 
process, yet managed to convince the public 
and government that this compensation was 
justified since they brought profits to the 
public purse—hiding the fact that the public 
would have been the sole payer in the event 
of losses. 

b- Mismatch of bonus frequency. Less 
misunderstood by policymakers, a manager 
paid on an annual frequency does not have an 
incentive to maximize profits; his incentive is 
to extend the time to losses so he can 
accumulate bonuses before eventual "blowup" 
for which he does not have to repay previous 
compensation. This provides the incentive to 

This paper —while a standalone invited essay for New 
Political Economy — synthesizes the various technical 
documents by the author as related to the financial 
crisis.  It can also be used as a technical companion to 
The Black Swan. 
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make a series of asymmetric bets (high 
probability of small profits, small probability of 
large losses) below their probabilistic fair 
valueiii.   

c- The agency problem is far more vicious in 
the tails, as it can explain the growing left-
skewness (fragility) of corporations as they get 
larger (left-skewness is shown in Zeckhauser & 
Patel, 1999, rediscussed in argument on 
convexity). 

 

3) Increased promotion of methods helping to 
hide tail risks VaR and similar methods promoted tail 
risks. See my argument that information has harmful 
side effects as it does increase overconfidence and risk 
taking. 

a- I said that knowledge degrades very quickly 
in the tails of the distributions, making tail 
risks non-measurable (or, rather, impossible to 
estimate —"measure" conveys the wrong 
impression). Yet vendors have been promoting 
method of risk management  called "Value at 
Risk", VaR, that just measures the risks in the 
tail! it is supposed to project the expected 
extreme loss in an institution’s portfolio that 
can occur over a specific time frame at a 
specified level of confidence (Jorion,1997). 
Example: a standard daily VaR of $1 million at 
a 1% probability tells you that you have less 
than a 1% chance of losing $1 million or more 
on a given day. There are many modifications 
around VaR, "conditional VaR" 1 , equally 
exposed to errors in the tails.  Although such 
definition of VaR is often presented as a 
"maximum" loss, it is technically not so in an 
open-ended exposure: since, conditional on 
losing more than $1 million, you may lose a lot 
more, say $5 million. So simply, VaR 
encourages risk-taking in the tails and the 
appearance of "low volatility". 

Note here that regulators made banks shift 
from hard heuristics (robust to model error) to 
such "scientific" measurements. 

Criticism has been countered with the 
argument that "we have nothing better"; 
ignoring of iatrogenic effects and mere 
phronetic common sense.  

                                                   
1 Data shows that methods meant to improve the standard 

VaR, like "expected shortfall" or "conditional VaR" are equally 
defective with economic variables --past losses do not predict 
future losses. Stress testing is also suspicious because of the 
subjective nature of "reasonable stress" number --we tend to 
underestimate the magnitude of outliers. "Jumps" are not 
predictable from past jumps.  

 

b- Iatrogenics of measuments (harm done by 
the healer): these estimations presented as 
"measures" are known to increase risk taking. 
Numerous experiments provide evidence that 
professionals are significantly influenced by 
numbers that they know to be irrelevant to 
their decision, like writing down the last 4 
digits of one's social security number before 
making a numerical estimate of potential 
market moves. German judges rolling  dice 
before sentencing showed an increase of 50% 
in the length of the sentence when the dice 
show a high number, without being conscious 
of it.2 

c- Linguistic conflation: Calling these risk 
estimation "measures" create confusion in the 
mind of people, making them think that 
something in current existence (not yet to 
exist in the future) is being measured —these 
metrics are never presented as mere 
predictions with an abnormally huge error (as 
we saw, several orders of magnitude). 

4) Increased role of tail events in economic life 
thanks to "complexification" by the internet and 
globalization, in addition to optimization of the systems. 

a- The logic of winner take all effects: The 
Black Swan provides a review of "fat tail 
effects" coming from the organization of 
systems; consider the island effect, how a 
continent will have more acute concentration 
effects as species concentration drop in larger 
areas.  The increase in "winner-take-all" 
effects is evident across economic variables 
(which includes blowups). 

b- Optimization makes systems left-slewed, 
more prone to extreme losses —which can be 
seen in concavity effects under the 
perturbation of parameters. 

5) Growing misunderstanding of tail 
risks  Ironically while tail risks have increased, financial 
and economic theories that discount tail risks have 
been more vigorously promoted (while operators 
understood risks heuristically in the past3), particularly 
after the crash of 1987, after the "Nobel" for makers of 
"portfolio theory".  Note the outrageous fact that the 
entire economics establishment missed the rise in these 
risks, without incurring subsequent problems in 
credibility. 

                                                   
2 See  English and Mussweiler, English Mussweiler and 

Strack, 20o6, LeBoeuf and Shafir, 2006. 
 
3  The key problem with finance theory has been 

supplanting embedded and time-derived heuristics, such as the 
interdicts against debt and forecasting, with models akin to 
"replacing a real hand with an artificial one". 
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Principal errors by the economics establishment that 
contribute to increasing fragility: 

a- Ignorance of "true" fat tail effects; or 
misunderstanding that fat tails lead to massive 
imprecision in the measurement of low 
probability events (such as the use of Poisson 
jumps by Merton, 1976 or the more general 
versions of subordinated processes —these 
models fit the past with precision on paper but 
are impossible to calibrate in practice and 
induce a false sense of confidence). 
Misunderstanding that true-fat-tails cancels 
the core of financial theory and econometric 
methods used in practice. 

b-  Lack of awareness of the effect of 
parameter estimation on a model. Some 
models —actually almost all models — take 
parameters for granted when the process of 
parameter discovery in real-life leads to 
massive degradation of their results owing to 
convexity effects from such layer of 
uncertainty. 

c- Interpolation v/s Extrapolation. 
Misunderstanding of the "atypicality of events" 
—looking for past disturbances for guidance 
when we have obvious evidence of lack of 
precedence of such events. For instance, 
Rogoff and Reinhart (2010) look at past data 
without realizing that in fat tailed domains, 
one should extrapolate from history, instead of 
interpolating or looking for naive similarities 
(Lucian's largest mountain). 

d- Optimization. It can be shown that 
optimization causes fragility when concave 
under perturbation errors, i.e., most cases. 

e- Economies of scale. There are fragilities 
coming from size, both for the institutions and 
causing externalitiesiv. 

 

  

II-RESPONSIBLE PARTIES 

  

1) Government Officials of Both Administrations 
promoting blindness to tail risks and nonlinearities (e.g. 
Bernanke's pronouncement of "great moderation") and 
flawed tools in the hands of policymakers not making 
the distinction between different classes of 
randomness. 

2) Bankers/Company executives: The individuals 
had an incentive to hide tail risks as a safe strategy to 
collect bonuses. 

3) Risk vendors and professional associations: 
CFA, IAFE promotion of portfolio theory and Value-at-
risk methods. 

4) Business schools and the economics 
establishment: They kept promoting and teaching 
portfolio theory and inadequate risk measurement 
methods on grounds that "we need to give students 
something" (arguments used by medieval 
medicine).  They still do4. 

5) Regulators: Promoted quantitative risk methods 
(VaR) over heuristics, use of flawed risk metrics (AAA), 
and encouraged a certain class of risk taking. 

6) Bank of Sweden Prize, a.k.a. "Nobel" in 
Economics: gave the Nobel stamp to empirically, 
mathematically, and scientifically invalid theories, such 
as portfolio theory, Engle's GARCH, and many more.  In 
general their scientific invalidity comes from the use of 
wrong models of uncertainty that provide exactly the 
opposite results to what an empirically and 
mathematically more rigorous  model of uncertainty 
would do. 

Ethical considerations. Surprisingly the economics 
establishment should have been aware of the use the 
wrong tools and complete fiasco in the theories, but 
they kept pushing the warnings under the rug, or 
hiding their responses. There has been some diffusion 
of responsibility that is at the core of the system. This 
author has debated: Robert Engle, Myron Scholes, 
Robert Merton, and Stephen Ross, among others,  
without any hint of their willing to accept the very 
notion of the risks they were creating with their 
Procrustean bed methods of approximation —prompting 
the following metaphor by this author: "they are cutting 
part of someone's brains and claiming that we have a 
human with 99% accuracy". The only favorable 
reaction this author encountered was even more 
outrageous, from those, like Robert Shiller, with the 
half-way "you may have a point but you go too far" 
that can be vastly more damaging to society that just 
regular attacks. 

 

 

III- SUGGESTED REMEDIES 

As we saw with banks, Toyota's problem, the BP oil 
spill, an economic system with a severe agency 

                                                   
4  In early 2009 a Forbes journalist in the process of 

writing my profile spoke to NYU's Robert Engle who got the 
Bank of Sweden Prize ("Nobel") for methods that patently have 
never worked outside papers. He reported to me that Engle 
response was that academia was not responsible for tail risks, 
since it is the government job to cover the losses beyond a 
certain point. This is the worst moral hazard argument that 
played into the hands of the Too Big to Fail problem. 
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problem builds a natural tendency to push and hide 
risks in the tails, even without help from the economics 
establishment. Risks keep growing where they can be 
seen the least; there is a need to break the moral 
hazard by making everyone accountable both 
chronologically and statistically.  

Hence the principle: The captain goes down with 
the ship; all captains and all ships: making 
everyone involved in risk-bearing accountable, no 
exception, not a single one. Morally, legally, whatever 
can be done. That includes the "Nobel" committee 
(Bank of Sweden), the academic establishment, the 
rating agencies, forecasters, bank managers, etc5.  

Time to realize that capitalism is not about free 
options6. 

 

Note that organizations such as the CFA and American 
Finance Association, RiskMetrics and such vendors, and 
finance departments in business schools, those that 
promoted tools that blew up society do not seem 
concerned at all into changing their methods or 
accepting their role. And they are currently, at the time 
of writing, still in the process of blowing up society. 
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Errors, robustness, and the fourth quadrant
Nassim Nicholas Taleb
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Abstract

The paper presents evidence that econometric techniques based on variance – L2 norm – are flawed and do not replicate. The
result is un-computability of the role of tail events. The paper proposes a methodology to calibrate decisions to the degree (and
computability) of forecast error. It classifies decision payoffs in two types: simple (true/false or binary) and complex (higher
moments); and randomness into type-1 (thin tails) and type-2 (true fat tails), and shows the errors for the estimation of small
probability payoffs for type 2 randomness. The fourth quadrant is where payoffs are complex with type-2 randomness. We
propose solutions to mitigate the effect of the fourth quadrant, based on the nature of complex systems.
c© 2009 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

Keywords: Complexity; Decision theory; Fat tails; Risk management

1. Background and purpose

It appears scandalous that, of the hundreds of
thousands of professionals involved, including prime
public institutions such as the World Bank, the
International Monetary Fund, different governmental
agencies and central banks, private institutions such as
banks, insurance companies, and large corporations,
and, finally, academic departments, only a few
individuals considered the possibility of the total
collapse of the banking system that started in 2007
(and is still worsening at the time of writing), let alone
the economic consequences of such breakdown. Not
a single official forecast turned out to be close to the
outcome experienced—even those issuing “warnings”

E-mail address: nnt@fooledbyrandomness.com.

did not come close to the true gravity of the situation.
A few warnings about the risks, such as Taleb (2007a)
or the works of the economist Nouriel Roubini,1
went unheeded, often ridiculed.2 Where did such
sophistication go? In the face of miscalculations of
such proportion, it would seem fitting to start an
examination of the conventional forecasting methods
for risky outcomes and assess their fragility—indeed,
the size of the damage comes from confidence
in forecasting and the mis-estimation of potential
forecast errors for a certain classes of variables and
a certain type of exposures. However, this was not

1 “Dr. Doom”, New York Times, August 15, 2008.
2 Note the irony that the ridicule of the warnings in Taleb (2007a)

and other ideas came from the academic establishment, not from the
popular press.

0169-2070/$ - see front matter c© 2009 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.ijforecast.2009.05.027
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the first time such events have happened—nor was it
a “Black Swan” (when capitalized, an unpredictable
outcome of high impact) to the observer who took
a close look at the robustness and empirical validity
of the methods used in economic forecasting and risk
measurement.

This examination, while grounded in economic
data, generalizes to all decision-making under
uncertainty in which there is a potential miscalculation
of the risk of a consequential rare event. The problem
of concern is the rare event, and the exposure to it, of
the kind that can fool a decision maker into taking a
certain course of action based on a misunderstanding
of the risks involved.

2. Introduction

Forecasting is a serious professional and scientific
endeavor with a certain purpose, namely to provide
predictions to be used in formulating decisions, and
taking actions. The forecast translates into a decision,
and, accordingly, the uncertainty attached to the
forecast, i.e., the error, needs to be endogenous to
the decision itself. This holds particularly true of risk
decisions. In other words, the use of the forecast needs
to be determined — or modified — based on the
estimated accuracy of the forecast. This in turn creates
an interdependency about what we should or should
not forecast—as some forecasts can be harmful to
decision makers.

Fig. 1 gives an example of harm coming from
building risk management on the basis of extrapolative
(usually highly technical) econometric methods,
providing decision-makers with false confidence about
the risks, and leaving society exposed to several
trillions in losses that put capitalism on the verge of
collapse.

A key word here, fat tails, implies the outsized role
in the total statistical properties played by one single
observation—such as one massive loss coming after
years of stable profits or one massive variation unseen
in past data.

– “Thin-tails” lead to ease in forecasting and
tractability of the errors;

– “Thick-tails” imply more difficulties in getting a
handle on the forecast errors and the fragility of the
forecast.

200

0

-200

-400

-600
1999 2000 2001 2002 2003 2004 2005 2006 2007

Fig. 1. Indy Mac’s annual income (in millions) between 1998
and 2007. We can see fat tails at work. Tragic errors come from
underestimating potential losses, with the best known cases being
FNMA, Freddie Mac, Bear Stearns, Northern Rock, and Lehman
Brothers, in addition to numerous hedge funds.

Close to 1000 financial institutions have shut down
in 2007 and 2008 from the underestimation of outsized
market moves, with losses up to 3.6 trillion.3 Had
their managers been aware of the unreliability of the
forecasting methods (which were already apparent in
the data), they would have requested a different risk
profile, with more robustness in risk management and
smaller dependence on complex derivatives.

2.1. The smoking gun

We conducted a simple scientific examination
of economic data, using a near-exhaustive set that
includes 38 “tradable” variables4 that allow for
daily prices: major equity indices across the globe
(US, Europe, Asia, Latin America), most metals
(gold, silver), major interest rate securities, and main
currencies — what we believe represents around 98%
of tradable volume.

3 Bloomberg, Feb 5, 2009.
4 We selected a near-exhaustive set of economic data that includes

“tradable” securities that allow for a future or a forward market:
most equity indices across the globe, most metals, most interest
rate securities, and most currencies. We collected all available
traded futures data—what we believe represents around 98% of
tradable volume. The reason we selected tradable data is because
of the certainty of the practical aspect of a price on which one can
transact: a nontradable currency price can lend itself to all manner
of manipulation. More precisely we selected “continuously rolled”
futures in which the returns from holding a security are built-in. For
instance, analyses of Dow Jones that fail to account for dividend
payments or analyses of currencies that do not include interest rates
provide a bias in the measurement of the mean and higher moments.
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Share of Max Quartic Observation
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Fig. 2. The smoking gun: Maximum contribution to the fourth
moment kurtosis coming from the largest observation in ∼10,000
(29–40 years of daily observations) for 43 economic variables. For
the Gaussian the number is expected to be ∼0.006 for n = 10,000.

We analyzed the properties of the logarithmic
returns rt,!t = Log

(
Xt

Xt−!t

)
, where !t can be 1 day,

10 days, or 66 days (non-overlapping intervals).5
A conventional test of nonnormality used in the

literature is the excess kurtosis over the normal
distribution. Thus, we measured the fourth noncentral

moment k(!t) =
∑

r4
t,!t

n of the distributions and
focused on the stability of the measurements.

By examining Table 1 and Figs. 2 and 3, it appears
that:
(1) Economic variables (currency rates, financial

assets, interest rates, commodities) are patently fat

5 By convention we use t = 1 as one business day.

tailed—with no known exception. The literature
(Bundt & Murphy, 2006) shows that this also
applies to data not considered here, owing to a lack
of daily changes, such as GDP, or inflation.

(2) Conventional methods, not just those relying on
a Gaussian distribution, but those based on least-
square methods, or using variance as a measure of
dispersion, are, according to the data, incapable
of tracking the kind of “fat-tails” we see (more
technically, in the L2 norm, as will be discussed in
Section 5). The reason is that most of the kurtosis
is concentrated in a few observations, making
it practically unknowable using conventional
methods—see Fig. 2. Other tests in Section 5
(the conditional expectation above a threshold)
show further instability. This incapacitates least-
square methods, linear regression, and similar
tools, including risk management methods such
as “Gaussian Copulas” that rely on correlations or
any form of the product of random variables.6, 7, 8

6 This should predict, for instance, the total failure in practice
of the ARCH/GARCH methods (Engle, 1982), in spite of their
successes in-sample, and in academic citations, as they are based
on the behavior of squares.

7 One counterintuive result is that sophisticated operators do not
seem to be aware of the norm they are using, thus mis-estimating
volatility, see Goldstein and Taleb (2007).

8 Practitioners have blamed the naive L2 reliance on the risk
management of credit risk for the blowup of banks in the crisis
that started in 2007. See Felix Salmon’s “Recipe For Disaster: The
Formula That Killed Wall Street” in Wired. 02/23/2009.
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Fig. 3. A selection of the 12 most acute cases among the 43 economic variables.
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Table 1
Fourth Noncentral Moment at daily, 10 day, and 66 day windows for the random variables.

K (1) K (10) K (66) Max quartic Years

Australian Dollar/USD 6.3 3.8 2.9 0.12 22
Australia TB 10y 7.5 6.2 3.5 0.08 25
Australia TB 3y 7.5 5.4 4.2 0.06 21
BeanOil 5.5 7.0 4.9 0.11 47
Bonds 30Y 5.6 4.7 3.9 0.02 32
Bovespa 24.9 5.0 2.3 0.27 16
British Pound/USD 6.9 7.4 5.3 0.05 38
CAC40 6.5 4.7 3.6 0.05 20
Canadian Dollar 7.4 4.1 3.9 0.06 38
Cocoa NY 4.9 4.0 5.2 0.04 47
Coffee NY 10.7 5.2 5.3 0.13 37
Copper 6.4 5.5 4.5 0.05 48
Corn 9.4 8.0 5.0 0.18 49
Crude Oil 29.0 4.7 5.1 0.79 26
CT 7.8 4.8 3.7 0.25 48
DAX 8.0 6.5 3.7 0.2 18
Euro Bund 4.9 3.2 3.3 0.06 18
Euro Currency/DEM previously 5.5 3.8 2.8 0.06 38
Eurodollar Depo 1M 41.5 28.0 6.0 0.31 19
Eurodollar Depo 3M 21.1 8.1 7.0 0.25 28
FTSE 15.2 27.4 6.5 0.54 25
Gold 11.9 14.5 16.6 0.04 35
Heating Oil 20.0 4.1 4.4 0.74 31
Hogs 4.5 4.6 4.8 0.05 43
Jakarta Stock Index 40.5 6.2 4.2 0.19 16
Japanese Gov Bonds 17.2 16.9 4.3 0.48 24
Live Cattle 4.2 4.9 5.6 0.04 44
Nasdaq Index 11.4 9.3 5.0 0.13 21
Natural Gas 6.0 3.9 3.8 0.06 19
Nikkei 52.6 4.0 2.9 0.72 23
Notes 5Y 5.1 3.2 2.5 0.06 21
Russia RTSI 13.3 6.0 7.3 0.13 17
Short Sterling 851.8 93.0 3.0 0.75 17
Silver 160.3 22.6 10.2 0.94 46
Smallcap 6.1 5.7 6.8 0.06 17
SoyBeans 7.1 8.8 6.7 0.17 47
SoyMeal 8.9 9.8 8.5 0.09 48
Sp500 38.2 7.7 5.1 0.79 56
Sugar # 11 9.4 6.4 3.8 0.3 48
SwissFranc 5.1 3.8 2.6 0.05 38
TY10Y Notes 5.9 5.5 4.9 0.1 27
Wheat 5.6 6.0 6.9 0.02 49
Yen/USD 9.7 6.1 2.5 0.27 38

(3) There is no evidence of “convergence to normal-
ity” by aggregation, i.e., looking at the kurtosis of
weekly or monthly changes. The “fatness” of the
tails seems to be conserved under aggregation.

Clearly, had decision-makers been aware of such
facts, and such unreliability of conventional methods

in tracking large deviations, fewer losses would have
been incurred, as they would have reduced exposures
in some areas rather than rely on more “sophisticated”
methods. The financial system has been fragile, as this
simple test shows, with the evidence staring at us all
along.
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2.2. The problem of large deviations

2.2.1. The empirical problem of small probabilities
The central problem addressed in this paper is that

small probabilities are difficult to estimate empirically
(since the sample set for these is small), with a
greater error rate than that for more frequent events.
But since, in some domains, their effects can be
consequential, the error concerning the contribution
of small probabilities to the total moments of the
distribution becomes disproportionately large. The
problem has been dealt with by assuming a probability
distribution and extrapolating into the tails—which
brings model error into play. Yet, as we will discuss,
model error plays a larger role with large deviations.

2.2.2. Links to decision theory
It is not necessary here to argue that a decision

maker needs to use a full tableau of payoffs (rather
than the simple one-dimensional average forecast) and
that payoffs from decisions vary in their sensitivity to
forecast errors. For instance, while it is acceptable to
take a medicine that might be effective with a 5% error
rate, but offers no side effects otherwise, it is foolish
to play Russian roulette with the knowledge that one
should win with a 5% error rate—indeed, standard
theory of choice under uncertainty requires the use of
full probability distributions, or at least a probability
associated with every payoff. But so far this simple
truism has not been integrated into the forecasting
activity itself—as no classification has been made
concerning the tractability and consequences of the
errors. To put it simply, the mere separation between
forecasting and decisions is lacking in both rigor and
practicality, as it ruptures the link between forecast
error and the quality of the decision.

The extensive literature on decision theory and
choices under uncertainty so far has limited itself to
(1) assuming known probability distributions (except
for a few exceptions in which this type of uncertainty
has been called “ambiguity”9), and (2) ignoring fat
tails. This paper introduces a new structure of fat
tails and classification of classes of randomness into
the analysis, and focuses on the interrelation between
errors and decisions. To establish a link between

9 Ellsberg’s paradox, Ellsberg (1961); see also Gardenfors and
Sahlin (1982) and Levi (1986).

decision and quality of forecast, this analysis operates
along two qualitative lines: qualitative differences
between decisions along their vulnerability to error
rates on one hand, and qualitative differences between
two types of distributions of error rates. So there are
two distinct types of decisions, and two distinct classes
of randomness.

This classification allows us to isolate situations
in which forecasting needs to be suspended—or a
revision of the decision or exposure may be necessary.
What we call the “fourth quadrant” is the area in which
both the magnitude of forecast errors is large and
the sensitivityt to these errors is consequential. What
we recommend is either changes in the payoff itself
(clipping exposure) or the shifting of exposures away
from that part. For that we will provide precise rules.

The paper is organized as follows. First, we classify
decisions according to targeted payoffs. Second, we
discuss the problem of rare events, as these are
the ones that are both consequential and hard to
predict. Third, we present the classification of the
two categories of probability distributions. Finally, we
present the “fourth quadrant” and what we need to do
to escape it, thus answering the call for how to handle
“decision making under low predictability”.

3. The different types of decisions

The first type of decisions is simple, it aims at
“binary” payoffs, i.e. you just care whether something
is true or false. Very true or very false does not
matter. Someone is either pregnant or not pregnant.
A biological experiment in the laboratory or a
bet about the outcome of an election belong to
this category. A scientific statement is traditionally
considered “true” or “false” with some confidence
interval. More technically, they depend on the zeroth
moment, namely just on the probability of events, and
not their magnitude —for these one just cares about
“raw” probability.10

10 The difference can be best illustrated as follows. One of the
most erroneous comparisons encountered in economics is the one
between the “wine rating” and “credit rating” of complex securities.
Errors in wine rating are hardly consequential for the buyer (the
“payoff” is binary); errors in credit ratings have bankrupted banks,
as these carry massive payoffs.
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Clearly these are not very prevalent in life—they
mostly exist in laboratory experiments and in research
papers.

The second type of decisions depends on more
complex payoffs. The decision maker does not just
care about the frequency, but about the impact as
well, or, even more complex, some function of the
impact. So there is another layer of uncertainty of
impact. These depend on higher moments of the
distribution. When one invests one does not care about
the frequency, how many times he makes or loses, he
cares about the expectation: how many times money is
made or lost times the amount made or lost. We will
see that there are even more complex decisions.

More formally, where p[x] is the probability
distribution of the random variable x , and D the
domain on which the distribution is defined, the payoff
λ(x) is defined by integrating on D as:

λ(x) =
∫

f (x)p(x)dx .

Note that we can incorporate utility or nonlinearities
of the payoff in the function f (x). But let us ignore
utility for the sake of simplification.

For a simple payoff, f (x) = 1. So L(x) becomes
the simple probability of exceeding x , since the final
outcome is either 1 or 0 (or 1 and −1).

For more complicated payoffs, f (x) can be
complex. If the payoff depends on a simple
expectation, i.e., λ(x) = E[x], the corresponding
function f (x) = x , and we need to ignore frequencies
since it is the payoff that matters. One can be right
99% of the time, but this does not matter at all, since
with some skewed distributions, the consequences of
the expectation of the 1% error can be too large.
Forecasting typically has f (x) = x , a linear function
of x , while measures such as least squares depend on
the higher moments f (x) = x2.

Note that some financial products can even depend
on the fourth moment (see Table 2).11

Next we turn to a discussion of the problem of rare
events.

11 More formally, a linear function with respect to the variable x
has no second derivative; a convex function is one with a positive
second derivative. By expanding the expectation of f (x) we end
up with E[ f (x)] = f (x)e[!x] + 1/2 f ′′(x)E[!x2] + · · ·, and
hence higher orders matter to the extent of the importance of higher
derivatives.

4. The problem of rare events

The passage from theory to the real world presents
two distinct difficulties: “inverse problems” and “pre-
asymptotics”.

4.1. Inverse problems

It is the greatest difficulty one can encounter in
deriving properties. In real life we do not observe
probability distributions, we just observe events. So
we do not know the statistical properties — until, of
course, after the fact — as we can see in Fig. 1. Given
a set of observations, plenty of statistical distributions
can correspond to the exact same realizations—each
would extrapolate differently outside the set of events
on which it was derived. The inverse problem is
more acute when more theories, more distributions
can fit a set of data—particularly in the presence of
nonlinearities or nonparsimonious distributions.12

So this inverse problem is compounded of two
problems:

+ The small sample properties of rare events, as
these will be naturally rare in a past sample. This
is also acute in the presence of nonlinearities,
as the families of possible models/parametrization
explode in numbers.

+ The survivorship bias effect of high impact rare
events. For negatively skewed distributions (with
a thicker left tail), the problem is worse. Clearly,
catastrophic events will be necessarily absent from
the data, since the survivorship of the variable
itself will depend on such effect. Thus, left tailed
distributions will (1) overestimate the mean; (2)
underestimate the variance and the risk.

Fig. 4 shows how we normally lack data in the tails;
Fig. 5 shows the empirical effect (see Fig. 6).

4.2. Pre-asymptotics

Theories can be extremely dangerous when they
were derived in idealized situations, the asymptote, but
are used outside the asymptote (at its limit, say infinity

12 A Gaussian distribution is parsimonious (with only two
parameters to fit). But the problem of adding layers of possible
jumps, each with a different probabilities, opens up endless
possibilities of combinations of parameters.
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Table 2
Tableau of decisions.

Mo M1 M2+

“True/False” Expectations
LINEAR PAYOFF NONLINEAR PAYOFF

f (x) = 0 f (x) = 1 f (x) nonlinear(= x2, x3, etc.)
Medicine (health not epidemics) Finance: nonleveraged investment Derivative payoffs
Psychology experiments Insurance, measures of expected shortfall Dynamically hedged portfolios
Bets (prediction markets) General risk management Leveraged portfolios (around the loss point)
Binary/Digital derivatives Climate Cubic payoffs (strips of out of the money options)
Life/Death Economics (Policy) Errors in analyses of volatility

Security: Terrorism, Natural catastrophes Calibration of nonlinear models
Epidemics Expectation weighted by nonlinear utility
Casinos Kurtosis-based positioning (“volatility trading”)
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0.05

-15 -12.5 -10 -7.5 -5 -2.5

Fig. 4. The confirmation bias at work. The shaded area shows what
tend to be missing from the observations. For negatively-skewed,
fat-tailed distributions, we do not see much of negative outcomes
for surviving entities AND we have a small sample in the left tail.
This illustrates why we tend to see a better past for a certain class of
time series than is warranted.
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Fig. 5. Outliers don’t predict outliers. The plot shows (on a
logarithmic scale) a shortfall in one given year against the shortfall
the following one, repeated throughout for the 43 variables. A
shortfall here is defined as the sum of deviations in excess of 7%.
Past large deviations do not appear to predict future large deviations,
at different lags.
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Fig. 6. Regular events predict regular events. This plot shows, by
comparison with Fig. 5, how, for the same variables, the mean
deviation in one period predicts the one in the subsequent period.

or the infinitesimal). Some asymptotic properties do
work well pre-asymptotically (as we’ll see, with type-
1 distributions), which is why casinos do well, but
others do not, particularly when it comes to the class
of fat-tailed distributions.

Most statistical education is based on these
asymptotic, laboratory-style Platonic properties—yet
we take economic decisions in the real world that very
rarely resembles the asymptote. Most of what students
of statistics do is assume a structure, typically with
a known probability. Yet the problem we have is not
so much making computations once you know the
probabilities as finding the true distribution.

5. The two probabilistic structures

There are two classes of probability domains
— very distinct qualitatively and quantitatively —
according to precise mathematical properties. The
first, Type-1, we call “benign” thin-tailed nonscalable,
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the second, Type 2, “wild” thick tailed scalable,
or fractal (the attribution “wild” comes from the
classification of Mandelbrot, 1963, 2001).

Taleb (2009) makes the distinction along the lines
of convergence to the Central Limit Theorem. Type-1
converges in an acceptable form, while Type-2 either
does not converge (infinite variance), or converges
only in a remote asymptote and needs to be treated
pre-asymptotically. Taleb (2009) also shows that one
of the mistakes in the economics literature that “fattens
the tails”, with two main classes of nonparsimonious
models and processes (the jump-diffusion processes
of Merton, 1976,13 or stochastic volatility models
such as Engels’ ARCH14) is to believe that the
second type of distribution is amenable to analyses
like the first—except with fatter tails. In reality, a
fact commonly encountered by practitioners is that
fat-tailed distributions are very unwieldy—as we can
see in Fig. 2. Furthermore, we often face a problem
of mistaking one for the other: a process that is
extremely well behaved, but, on occasions, delivers
a very large deviation, can easily be mistaken for a
thin-tailed one—a problem known as the “problem
of confirmation” (Taleb, 2007a,b). So we need to be
suspicious of the mistake of taking Type-2 for Type-1,
as it is more severe (and more readily made) than the
one in the other direction.15

As we saw from the data presented, this
classification of “fat tails” does not just mean having a
fourth moment worse than the Gaussian. The Poisson
distribution, or a mixed distribution with a known
Poisson jump, would have tails thicker than the
Gaussian; but this mild form of fat tails can be dealt
with rather easily—the distribution has all its moments
finite. The problem comes from the structure of the
decline in probabilities for larger deviations and the
ease with which the tools at our disposal can be tripped
into producing erroneous results from observations of
data in a finite sample and jumping to wrong decisions.

13 See the general decomposition into diffusion and jump (non-
scalable) in Duffie, Pan, and Singleton (2000) and Merton (1976);
and the discussion in Baz and Chacko (2004) and Haug (2007).
14 Engle (1982).
15 Makridakis et al. (1993) and Makridakis and Hibon (2000)

present evidence that more complicated methods of forecasting
do not deliver superior results to simple ones (already bad). The
obvious reason is that the errors in calibration swell with the
complexity of the model.

5.1. The scalable property of type-2 distributions

Take a random variable x . With scalable distribu-
tions, asymptotically, for x large enough (i.e. “in the
tails”), P[X>nx]

P[X>x] depends on n, not on x (the same
property can hold for P[X < nx] for negative values).
This induces statistical self-similarities. Note that ow-
ing to the finiteness of the realizations of random vari-
ables, and the lack of samples in the tails, we might
not be able to observe such a property, yet not be able
to rule out.

For economic variables, there is no fundamental
reason for the ratio of “exceedances” (i.e., the cumu-
lative probability of exceeding a certain threshold) to
decline, as both the numerator and the denominators
are multiplied by 2.

This self-similarity at all scales generates power-
law, or Paretian, tails, i.e., above a crossover point,
P[X > x] = K x−α .16, 17

Let us now draw the implications of type-2
distributions.

5.1.1. Finiteness of moments and higher order effects
For thick tailed distributions, moments higher than

α are not “finite”, i.e., they cannot be computed.
They can certainly be measured in finite samples—
thus giving the illusion of finiteness. But they typically
show a great degree of instability. For instance, a
distribution with an infinite variance will always
provide, in a sample, the illusion of finiteness of
variance.

In other words, while errors converge for type-1
distributions, the expectations of higher orders of x ,
say of order n, such as 1/n!E[xn], where x is the
error, do not decline; in fact, they become explosive
(see Fig. 7).

16 Scalable discussions: introduced by Mandelbrot (1963),
Mandelbrot (1997) and Mandelbrot and Taleb (in press).
17 Complexity and power laws: Amaral et al. (1997), Sornette

(2004), and Stanley, Amaral, Gopikrishnan, and Plerou (2000);
for scalability in different aspects of financial data, Gabaix,
Gopikrishnan, Plerou, and Stanley (2003a,b), Gabaix, Ramalho, and
Reuter (2003c), Gopikrishnan, Meyer, Amaral, and Stanley (1998),
Gopikrishnan, Plerou, Amaral, Meyer, and Stanley (1999), and
Gopikrishnan, Plerou, Gabaix, and Stanley (2000). For the statistical
mechanics of scale-free networks see Albert, Jeong, and Barabási
(2000), Albert and Barabasi (2002) and Barabási and Albert (1999).
The “sandpile effect” (i.e., avalanches and cascades) is discussed by
Bak (1996) and Bak, Tang, and Wiesenfeld (1987, 1988), as power
laws arise from conditions of self-organized criticality.
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Crude Oil: Annual Kurtosis 1983-2008
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Fig. 7. Kurtosis over time: example of an “infinite moment”. The graph shows the fourth moment for crude oil in annual nonoverlapping
observations between 1982 and 2008. The instability shows in the dependence of the measurement on the observation window.

5.1.2. “Atypicality” of moves
For thin tailed domains, the conditional expectation

of a random variable X , conditional on its exceeding a
number K , converges to K for larger values of K .

lim
K→∞

E[X |X>K ] = K .

For instance, the conditional expectation for a
Gaussian variable (assuming a mean of 0) conditional
on the variable exceeding 0 is approximately 0.8
standard deviations. But with K equals 6 standard
deviations, the conditional expectation converges to
6 standard deviations. The same applies to all of the
random variables that do not have a Paretian tail. This
induces some “typicality” of large moves.

For fat tailed variables, such a limit does not seem
to hold:

lim
K→∞

E[X |X>K ] = K c,

where c is a constant. For instance, the conditional
expectation of a market move, given that it is in
excess of 3 mean deviations, will be around 5 mean
deviations. The expectation of a move conditional on
it being higher than 10 mean deviations will be around
18. This property is quite crucial.

The atypicality of moves has the following
significance.
– One may correctly predict a given event, say, a

war, a market crash, or a credit crisis. But the
amplitude of the damage will be unpredicted. The

open-endedness of the outcomes can cause a severe
miscalculation of the expected payoff function.
For instance, the investment bank Morgan Stanley
predicted a credit crisis but was severely hurt (and
needed to be rescued) because it did not anticipate
the extent of the damage.

– Methods like Value-at-Risk18 that may correctly
compute, say, a 99% probability of not losing
no more than a given sum, called “value-at-
risk”, will nevertheless miscompute the conditional
expectation should such a threshold be exceeded.
For instance, one has 99% probability of not
exceeding a $1 million loss, but should such a loss
occur, it can be $10 million or $100 million.

This lack of typicality is of some significance.
Stress testing and scenario generation are based on
assuming a “crisis” scenario and checking robustness
to it. Unfortunately such luxury is not available for fat
tails, as “crises” do not have a typical magnitude.

Tables 3 and 4 show the evidence of a lack
of convergence to thin tails, and hence a lack of
“typicality” of the moves. We stopped for segments
for which the number of observations becomes small,
since a lack of observations in the tails can provide the
illusion of “thin” tails.

18 For the definition of Value at Risk see, Jorion (2001); for a
critique, see Joe Nocera, “Risk Mismanagement: What led to the
Financial Meltdown”, New York Time Magazine, Jan 2, 2009.
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Table 3
Conditional expectation for moves > K , 43 economic variables.

K , Mean
deviations

Mean move (in MAD)
in excess of K

n

1 2.01443 65,958
2 3.0814 23,450
3 4.19842 8,355
4 5.33587 3,202
5 6.52524 1,360
6 7.74405 660
7 9.10917 340
8 10.3649 192
9 11.6737 120

10 13.8726 84
11 15.3832 65
12 19.3987 47
13 21.0189 36
14 21.7426 29
15 24.1414 21
16 25.1188 18
17 27.8408 13
18 31.2309 11
19 35.6161 7
20 35.9036 6

Table 4
Conditional expectation for moves < K , 43 economic variables.

K , Mean
deviations

Average move (in MAD)
below K

n

−1 −2.06689 62,803
−2 −3.13423 23,258
−3 −4.24303 8,676
−4 −5.40792 3,346
−5 −6.66288 1,415
−6 −7.95766 689
−7 −9.43672 392
−8 −11.0048 226
−9 −13.158 133
−10 −14.6851 95
−11 −17.02 66
−12 −19.5828 46
−13 −21.353 38
−14 −25.0956 27
−15 −25.7004 22
−16 −27.5269 20
−17 −33.6529 16
−18 −35.0807 14
−19 −35.5523 13
−20 −38.7657 11

5.1.3. Preasymptotics
Even if we eventually converge to a probability

distribution of the kind well known and tractable, it is
central that the time to convergence plays a large role.

For instance, much of the literature invokes the
Central Limit Theorem to assume that fat-tailed
distributions with a finite variance converge to
a Gaussian under summation. If daily errors are
fat-tailed, cumulative monthly errors will become
Gaussian. In practice, this does not appear to hold.
The data, as we saw earlier, show that economic
variables do not remotely converge to the Gaussian
under aggregation.

Furthermore, finiteness of variance is a necessary
but highly insufficient condition. Bouchaud and
Potters (2003) showed that the tails remain heavy
while the body of the distribution becomes Gaussian
(see Fig. 8).

5.1.4. Metrics
Much of time series work seems to be based on

metrics which are in the square domain, and hence
patently intractable. Define the norm L p:
(

1
n

∑
|x |p

) 1
p
;

it will increase along with p. The numbers can become
explosive, with rare events taking a disproportionately
larger share of the metric at higher orders of p.
Thus the variance/standard deviation (p = 2), as
a measure of dispersion, will be far more unstable
than mean deviation (p = 1). The ratio of mean-
deviation to variance (Taleb, 2009) is highly unstable
for economic variables. Thus, modelizations based on
variance become incapacitated. More practically, this
means that for distributions with a finite mean (tail
exponent greater than 1), the mean deviation is more
“robust”.19

19 A note on the weaknesses of nonparametric statistics: the mean
deviation is often used as a robust, nonparametric or distribution-
free statistic. It does work better than the variance, as we saw, but
does not contain information on rare events, by the argument seen
before. Likewise, nonparametric statistical methods (relying on the
empirical frequency) will be extremely fragile to the “black swan
problem”, since the absence of large deviations in the past leave us
in a near-total opacity about their occurrence in the future—as we
saw in Fig. 4, these are confirmatory. In other words, nonparametric
statistics that consist of fitting a kernel to empirical frequencies,
assume, even more than other methods, that a large deviation will
have a predecessor.
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Fig. 8. Behavior of kurtosis under aggregation: we lengthen the
window of changes from 1 day to 50 days. Even for variables with an
infinite fourth moment, the kurtosis tends to drop under aggregation
in small samples, then rise abruptly after a large observation.

5.1.5. Incidence of rare events
One common error is to believe that thickening the

tails leads to an increase of the probability of rare
events. In fact, it usually leads to a decrease of the
incidence of such events, but the magnitude of the
event, should it happen, will be much larger.

Take, for instance, a normally distributed random
variable. The probability of exceeding 1 standard
deviation is about 16%. Observed returns in the
markets, with a higher kurtosis, present a lower
probability of exceeding the same threshold, around
7%–10%, but the depth of the excursions is greater.

5.1.6. Calibration errors and fat tails
One does not need to accept power laws to use

them. A convincing argument is that if we don’t
know what a “typical” event is, fractal power laws
are the most effective way to discuss the extremes
mathematically. It does not mean that the real world
generator is actually a power law—it means that we
don’t understand the structure of the external events
it delivers and need a tool of analysis. Also, fractals
simplify the mathematical discussions because all you
need to do is to perturbate one parameter, here the α,
and it increases or decreases the role of the rare event
in the total properties.

Say, for instance, that, in an analysis, you move
α from 2.3 to 2 for data in the publishing business;
the sales of books in excess of 1 million copies would
triple! This method is akin to generating combinations
of scenarios with series of probabilities and series of
payoffs, fattening the tail at each time.

The following argument will help illustrate the
general problem with forecasting under fat tails. Now
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n= 40,431

Fig. 9. Estimation error from 40 thousand economic variables.

the problem: Parametrizing a power law lends itself
to extremely large estimation errors (since heavy tails
have inverse problems). Small changes in the α main
parameter used by power laws lead to extremely large
effects in the tails.

And we don’t observe the α—an uncertainty that
comes from the measurement error. Fig. 9 shows more
than 40 thousand computations of the tail exponent α

from different samples of different economic variables
(data for which it is impossible to refute fractal power
laws). We clearly have problems figuring out what
the α is: our results are marred by errors. The mean
absolute error in the measurement of the tail exponent
is in excess of 1 (i.e. between α = 2 and α = 3).
Numerous papers in econophysics found an “average”
alpha between 2 and 3—but if you process the >20
million pieces of data analyzed in the literature, you
find that the variations between single variables are
extremely significant.20

Now this mean error has massive consequences.
Fig. 10 shows the effect: the expected value of your
losses in excess of a certain amount (called the
“shortfall”) is multiplied by >10 from a small change
in the α that is less than its mean error.21

20 One aspect of this inverse problem is even pervasive in Monte
Carlo experiments (much better behaved than the real world), see
Weron (2001).
21 Note that the literature on extreme value theory (Embrechts,

Klüppelberg, & Mikosch, 1997) does not solve much of the
problem, as the calibration errors stay the same. The argument
about calibration we saw earlier makes the values depend on the
unknowable tail exponent. This calibration problem explains how
Extreme Value Theory works better on computers than in the
real world (and has failed completely in the economic crisis of
2008–2009).
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Fig. 10. The value of the expected shortfall (expected losses in
excess of a certain threshold) in response to changes in the tail
exponent α. We can see it explode by an order of magnitude.

6. The map

First quadrant: Simple binary decisions, under
type-1 distributions: forecasting is safe. These
situations are, unfortunately, more common in
laboratories and games than in real life. We rarely
observe these in payoffs in economic decision making.
Examples: some medical decisions, casino bets,
prediction markets.

Second quadrant: Complex decisions under
type-1 distributions: Statistical methods may work
satisfactorily, though there are some risks. True, thin-
tails may not be a panacea, owing to preasymptotics,
lack of independence, and model error. There are
clearly problems there, but these have been addressed
extensively in the literature (see Freedman, 2007).

Third quadrant: Simple decisions, under type-2
distributions: there is little harm in being wrong—the
tails do not impact the payoffs.

Fourth quadrant: Complex decisions under type-
2 distributions: this is where the problem resides.
We need to avoid the prediction of remote payoffs—
though not necessarily ordinary ones. Payoffs from
remote parts of the distribution are more difficult to
predict than closer parts.

A general principle is that, while in the first three
quadrants you can use the best model you can find, this
is dangerous in the fourth quadrant: no model should
be better than just any model. So the idea is to exit the
fourth quadrant.

The recommendation is to move into the third
quadrant—it is not possible to change the distribution;
but it is possible to change the payoff, as will be
discussed in Section 7 (see Table 5).

The subtlety is that, while we have a poor idea
about the expectation in the 4th quadrant, exposures
to rare events are not symmetric.

7. Decision-making and forecasting in the fourth
quadrant

7.1. Solutions by changing the payoff

Finally, the main idea proposed in this paper is
to endogenize decisions, i.e., escape the 4th quadrant
whenever possible by changing the payoff in reaction
to the high degree of unpredictability and the harm it
causes. How?

Just consider that the property of “atypicality”
of the moves can be compensated by truncating
the payoffs, thus creating an organic “worst case”
scenario that is resistant to forecast errors. Recall
that a binary payoff is insensitive to fat tails
precisely because above a certain level, the domain of
integration, changes in probabilities do not impact the
payoff. So making the payoff no longer open-ended
mitigates the problems, thus making it more tractable
mathematically.

A way to express it using moments: all moments
of the distribution become finite in the absence of
open-ended payoffs, by putting a floor L below which
f (x) = 0, as well a ceiling H . Just consider that if you
are integrating payoffs in a finite, rather than an open-
ended domain, i.e. between L and H , respectively, the
tails of the distributions outside that domain no longer
matter. Thus the domain of integration becomes the
domain of payoff.

λ(x) =
∫ H

L
f (x) p(x)dx .

With an investment portfolio, for instance, it is
possible to “put a floor” on the payoff using insurance,
or, even better, by changing the allocation. Insurance
products are tailored with a maximum payoff;
catastrophe insurance products are also set with a
“cap”, though the cap might be high enough to allow
for a dependence on the error of the distribution.22

22 Insurance companies might cap the payoff of a single claim, but
a collection of capped claims might represent some problems, as the
maximum loss becomes so large as to be almost undistinguishable
from that with an uncapped payoff.
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Table 5
The four quadrants.

Simple payoffs Complex payoffs

Distribution 1 (“thin tailed”) First quadrant: Second quadrant:
Extremely safe Safe

Distribution 2 (no or unknown characteristic scale) Third quadrant: Fourth quadrant:
Safe Dangersa

a The dangers are limited to exposures in the negative domain (i.e., adverse payoffs). Some exposures, we will see, can only be “positive”.

7.1.1. The effect of skewness
We omitted earlier to discuss asymmetry in either

the payoff or the distribution. Clearly, the fourth
quadrant can present either left or right skewness.
If we suspect right-skewness, the true mean is more
likely to be underestimated by the measurement of
past realizations, and the total potential is likewise
poorly gauged. A biotech company (usually) faces
positive uncertainty, a bank faces almost exclusively
negative shocks.

More significantly, by raising the L (the lower
bound), one can easily produce positive skewness,
with a set floor for potential adverse outcomes and
open upside. For instance, what Taleb (2007a) calls a
“barbell” investment strategy consists of allocating a
high portion of a portfolio to T-Bills (or equivalent),
say α, with 0 < α < 1, and a small portion (1 − α) to
high-variance securities. While the total portfolio has
medium variance, L = (1 − α) times the face value
invested, another portfolio of the same variance might
lose 100%.

7.1.2. Convex and concave to error
If a source of uncertainty can offer more benefits

than a potential harm, then there may be gains from
it—which we label “convex” or “concave”.

More generally, we can be concave to model error
if the payoff from the error (obtained by changing
the tails of the distribution) has a negative second
derivative with respect to the change in the tails, or is
negatively skewed (like the payoff of a short option). It
will be convex if the payoff is positively skewed (like
the payoff of a long option).

7.1.3. The effect of leverage in operations and
investment

Leveraging in finance has the effect of increasing
concavity to model error. As we will see, it is exactly
the opposite of redundancy—it causes payoffs to

increase, but at the costs of an absorbing barrier should
there be an extreme event that exceeds the allowance
made in the risk measurement. Redundancy, on the
other hand, is the equivalent of de-leveraging, i.e. by
having more idle “inefficient” capital on the side. But
a a second look at such funds can reveal that there may
be a direct expected value from being able to benefit
from opportunities in the event of asset deflation, and
hence “idle” capital needs to be analyzed as an option.

7.2. Solutions by mitigating forecasting errors

7.2.1. Optimization vs. redundancy
The optimization paradigm of the economics

literature meets some problems in the fourth quadrant:
what if we have a consequential forecasting error?
Aside from the issue that the economic agent is
optimizing on the future states of the world, with
a given probability distribution, nowhere23 have the
equations taken into account the possibility of a
large deviation that would allow not optimizing
consumption and having idle capital. Also, the
psychological literature on well-being (Kahneman,
1999) shows an extremely concave utility function of
income—if one spends such income. But if one hides
it under the mattress, one will be less vulnerable to
an extreme event. So there is an enhanced survival
probability for those who have additional margin.

While economics have been mired in conventional
linear analysis, stochastic optimization with Bellman-
style equations that fall into the category Type-1, a
different point of view is provided by complex systems
analysis. One of the central attributes of complex
systems is redundancy (May, Levin, & Sugihara,
2008).

23 See Merton (1992) for a discussion of the general consumption
Capital Asset Pricing Market.
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Biological systems — those that have survived
millions of years — include a large share of
redundancies.24, 25 Just consider the number of double
organs (lungs, kidneys, ears). This may suggest an
option-theoretic analysis: redundancy is like an option.
One certainly pays for it, but it may be necessary
for survival. And while redundancy means similar
functions used by identical organs or resources,
biological systems have, in addition, recourse to
“degeneracy”, the possibility of one organ to perform
more than one function, which is the analog of
redundancy at a functional level (Edelman & Gally,
2001).

When institutions such as banks optimize, they
often do not realize that a simple model error can blow
through their capital (as it just did) (see Fig. 11).

Examples: In one day in August 2007, Goldman
Sachs experienced 24 times the average daily
transaction volume26—would 29 times have blown
up the clearing system? Another severe instance of
an extreme “spike” lies in an event of September
18, 2008, in the aftermath of the Lehman Bothers
Bankruptcy. According to congress documents, only
made public in February 2009:

On Thursday (Sept 18), at 11 am the Federal Reserve
noticed a tremendous draw-down of money market
accounts in the US, to the tune of $550 billion27 was
being drawn out in the matter of an hour or two.

If they had not done that [add liquidity], their
estimation is that by 2 pm that afternoon, $5.5 trillion
would have been drawn out of the money market system
of the U.S., which would have collapsed the entire
economy of the U.S., and within 24 h the world economy
would have collapsed. It would have been the end of our
economic system and our political system as we know
it.28

For naive economics, the best way to effectively
reduce costs is to minimize redundancy, and hence
avoiding the option premium of insurance. Indeed,

24 May et al. (2008).
25 For the scalability of biological systems, see Burlando (1993),

Enquist and Niklas (2001), Harte, Kinzig, and Green (1999), Ritchie
and Olff (1999) and Solé, Manrubia, Benton, Kauffman, and Bak
(1999).
26 Personal communication, Pentagon Highland Forum, April

meeting, 2008.
27 Even if the number, as is possible, is off by one order of

magnitude, the consequences remain extremely severe.
28 http://www.liveleak.com/view?i=ca2 1234032281.

Type-1 Noise

Type-2 Noise

Fig. 11. Comparison between Gaussian-style noise and Type-2
noise with extreme spikes—which necessitates more redundancy
(or insurance) than normally required. Policymakers and forecasters
were not aware that complex systems tend to produce the second
type of noise.

some systems tend to optimize and therefore become
more fragile. Albert and Barabasi (2002) and Barabási
and Albert (1999) warned (ahead of the North Eastern
power outage of August 2003) how electricity grids,
for example, optimize to the point of not coping with
unexpected surges—which predicted the possibility of
a blackout of the magnitude of the one that took place
in the North Eastern U.S. in August 2003. We cannot
discuss “flat earth” globalization without realizing
that it is overoptimized to the point of maximal
vulnerability.

7.2.2. Time and sample size
It takes much, much longer for a fat-tailed time

series to reveal its properties—in fact, many can,
in short episodes, masquerade as thin-tailed. At the
worst, we don’t know how long it would take to
know. But we can have a pretty clear idea whether
organically, because of the nature of the payoff, the
“Black Swan” can hit on the left (losses) or on the
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right (profits). This point can be used in climatic
analysis. Things that have worked for a long time are
preferable—they are more likely to have reached their
ergodic states.

Likewise, portfolio diversification needs to be
larger, much larger than anticipated. A mean variance
Markowitz-style portfolio construction fails in the
real world on several accounts. Taleb (2009) shows
that, even if we assume finite variance, but fat tails
and an unknown variance, the process of discovery
of the variance itself makes portfolio theory totally
unusable. DeMiguel, Garlappi, and Uppal (2007)
show that a naive 1/n allocation outperforms out-of-
sample any form of “optimal” portfolio—compatible
with the notion that fat tails (and unknown future
properties from past samples) require much broader
diversification than is required by modern portfolio
theory.

7.2.3. The problem of moral hazard
It is optimal (both economically and psychologi-

cally) to make a series of annual bonuses betting on
hidden risks in the fourth quadrant, then “blow up”
(Taleb, 2004). The problem is that bonus payments are
made with a higher frequency (i.e. annually) than is
warranted from the statistical properties (when it takes
longer to capture the statistical properties).

7.2.4. Metrics
Conventional metrics based on type 1 randomness

fail to produce reliable results—while the economics
literature is grounded in them. Concepts like “standard
deviation” are not stable and do not measure anything
in the fourth quadrant. This is also true for “linear
regression” (the errors are in the fourth quadrant),
“Sharpe ratio”, the Markowitz optimal portfolio,29

ANOVA, Least squares, etc. “Variance” and “standard
deviation” are terms invented years ago when we had
no computers. Note that from the data shown and the
instability of the kurtosis, no sample will ever deliver
the true variance in a reasonable time. However,
note that truncating payoffs blunts the effects of the
inadequacy of the metrics.

29 The framework of Markowitz (1952), as it is built on the L2

norm, does not stand any form of empirical or even theoretical
validity, owing to the dominance of higher moment effects, even
in the presence of “finite” variance, see Taleb (2009).

8. Conclusion

To conclude, we offered a method of robustifying
payoffs from large deviations and making forecasts
possible to perform. The extensions can be generalized
to a larger notion of society’s safety—for instance how
we should build systems (internet, banking structure,
etc.) to be impervious to random effects.
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I. BACKGROUND1 

The central idea in The 
Black Swan is about the 
limits in the knowledge 
about of small 
probabilities, both 
empirically 
(interpolation) and 
mathematically 
(extrapolation)2, and 
their consequences. This discussion starts from the 
basis of the isolation of the "Black Swan domain", called 
the "Fourth Quadrant"3, a domain in which 1) there is 
dependence on small probability events,  and 2) the 
incidence of these events is incomputable.  The Fourth 
Quadrant paper cursorily mentioned that there were 
two types of exposures, convex and concave and that 
we need to "robustify"4 though convexification. This 
discusses revolves around convexity biases as 
explaining the one-way failure of quantitative methods 
in social science (one-way in the sense that quantitative 
models in social science are worse than random: their 

                                                     
1 This paper is slightly more technical than what I 

presented at the July 14, 2010 Oxford BT Lecture. I thank Bent 
Flyvbjerg for help. I also thank my former student and 
teaching assistant Asim Samiuddin (my best student ever) for 
his remarkable work in formatting my improvised lectures and 
integrating the student questions into them. Most effective 
have been the conversation spanning 16 years with my 
collaborator and advisor Raphael Douady with whom I am 
writing more formal mathematical papers on similar issues. 

Note that academic economists and others who want to 
provide a critical comment on my technical work should use 
this paper and the Fourth Quadrant, not focus my writing style 
in The Black Swan unless they just want to do literary 
criticism.  

2 It took a long time but it looks like I finally managed to 
convince people that the Black Swan is not about Fat Tails 
(that's the Grey Swan), but the consequences of the 
incomputability of small probability events. 

3 Taleb(2009). 
4 At the "Hard Problems in Social Science" symposium, 

Harvard, April 2010, I presented "what to do in the 4th Q as 
the hard problem". 

errors go more significantly in 
one direction as they tends to 
fragilize)5. 

This note discusses the 
following matters not present in 
the literature: 

• The notion of model 
error as a convex or 
concave stochastic 
variable. 

• Why deficit forecasting errors are biased in 
one direction. 

• Why large is fragile to errors. 
• Why banks are fragile. 
• Why economics as a discipline made the 

monstrously consequential mistake of treating 
estimated parameters as nonstochastic 
variables and why this leads to fat-tails even 
while using Gaussian models. 

• The notion of epistemic uncertainty as 
embedded in model errors. 

• Simple tricks to compute model error. 

II. INTRODUCTION: DON'T CROSS A RIVER THAT IS 
ON AVERAGE FOUR FEET DEEP 

How many times have you crossed the Atlantic —with a 
nominal flying time of 7 hours— and arrived 1, 2, 3, or 
6 hours late? Or even a couple of days late, perhaps 
owing to the irritability of some volcano. Now, how 
many times have you landed 1, 2, 3, 6 hours early? 
Clearly we can see that in some environments 
uncertainty has a one way effect: extend expected 
arrival time6.  

                                                     
5 Finance professors involved in investment strategies 

tend to blow up from underestimation of risks in an patently 
nonrandom way (Taleb, 2010). This explains why. 

6 I adjust for a technicality for hair slicing probabilists, 
that the true expected arrival time is infinite, simply because of 
the very small probability of never getting there owing to a 
plane crash. So to be more rigorous, my expectation operator is 

This is a second technical companion to the essay On 
Robustness and Fragility in the second edition of The 
Black Swan (a follow up for the Fourth Quadrant). It 
makes the distinction inside the Fourth Quadrant 
"Black Swan Domain" between fragile an robust to 
model (or representational) error on the basis of 
convexity.   

In addition, it introduces a simple practical heuristic to 
measure (as an indicator of fragility) the sensitivity of 
a portfolio (or balance sheet) to model error. And it 
sets an explicit path to conduct policy. 

NOTE THAT IT IS NOT IN PAPER FORM -- 
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Simply, this comes from a convexity effect. In this 
discussion I will integrate explicitly the results of my 
lifetime of work as a derivatives trader, someone who 
works with nonlinear payoffs, and only with second and 
third order (or even higher) terms, and reframe the 
notion of robustness and fragility proposed in the 
postscript essay to The Black Swan7, in terms of 
optionality and convexity of payoffs.  

Missing Effects: The study of model error is not to 
question whether a model is precise or not, whether or 
not it tracks reality; it is to ascertain that the errors 
from the model don't have missing higher order terms 
that cause severe biases in one direction. Here we can 
see that uncertainty about the world will, in expectation 
lead to a longer arrival time. 

Small Probabilities: Another application explains why 
I spent my life making bets on unlikely events, on 
grounds of incompleteness of models. Assume someone 
tells you that the probability of an event is 0. But you 
don't trust his computation. Because a probability 
cannot be lower than 0, even in Oxford, your expected 
probability should be higher, at least higher than the 
expected error rate in the computation of such 
probability. Model error increases small probabilities in 
a disproportionate way (and accordingly decreases 
large probabilities). The effect is only neutral for 
probabilities in the neighborhood of .5. 

Convex function and Jensen's Inequality: I define 
a convex function as one with a positive second 
derivative, but this is a mathematical construct that 
does not translate well into practice. So, more 
practically, convexity over an interval Δx satisfies the 
following inequality:  

1
2
f (x + Δx) + f (x − Δx)[ ] > f (x)  

or more generally a linear combination of functions of 
points on the horizontal axis (the x) is higher than the  
function of linear combinations8. A concave function is 
the opposite. By Jensen's inequality, if we use for 
function the expectation operator, then the expectation 
of an average will be higher than the average of 
expectations.  

E f (ω∑ i
Xi )) > ω∑ i

E f (Xi ))  
For example, take a conventional die (six sides) and 
consider a payoff equal to the number it lands on. The 

expected (average) payoff is  
1
6 i

1

6

∑ = 3 12 . Now consider 

                                                     
slightly modified, we would be talking of expected delay time 
conditional on eventually arriving to destination. 

7 Taleb (2010). 
8  We will see further down that convexity can be just 

local. 

that we get the squared payoff, 
1
6 i2

1

6

∑ = 916 = 15.1666 , 

while 
1
6 i

1

6

∑⎛
⎝⎜

⎞
⎠⎟

2

= 12 1
4 , so, since squaring is a convex 

function, the average of a square payoff is higher than 
the square of the  average payoff.9 

III. CONVEXITY AS ANTIFRAGILITY 

The opposite of fragility is not robustness. 
Unfortunately, common language does not have an 
appropriate word for the opposite of fragility , which 
seems quite universal traits of languages (I tried 
Mediterranean, classical, and Semitic languages), other 
than robust or nonfragile —with the possible exception 
of the French in which "fort" (strong) is opposed to 
"weak". Just as a package sent by mail bears a stamp 
"fragile" on it, "handle with care", imagine the opposite: 
"antifragile", "please mishandle" or "be careless", as it 
benefits from shocks. 

So the discussion here focuses on three layers: 

• fragile 
• robust: not fragile, can resist shocks. 
• antifragile: benefits from shocks, "long 

volatility" in trader parlance 

IV. TWO TYPES OF VARIATIONS (OR PAYOFFS) 

Define the two types of payoffs for now, with a deeper 
mathematical discussion to come later.  

 

 

Figure 1 Concave payoff through time, with 
respect to a source of variation; or concave 
errors from left-skewed distributions. 

                                                     
9 An interesting application, according to Art de Vany who 

applies complexity theory to many aspects of human life, is in 
diet: researchers in nutrician are only concerned with 
"average" calories consumed, not distribution; a random and 
volatile feeding (feast or famine style) will less fattening than a 
steady one owing to concavity effects. 
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Concave to variations and model error: when 
payoff is negatively skewed with respect to a given 
source of variations; the shocks and errors can affect a 
random variable in a negative way more than a positive 
way, as in Figure 1. It is the equivalent of being short 
an option somewhere, with respect of a possible 
parameter. As we will see, even in situations of short 
an option, there may be an additional source of 
concavity. A concave payoff (with respect to a source of 
variation) would have an asymmetric distribution with 
thicker left-tail. 

A conventional measure of skewness is by taking the 
expectation  of the third moment of the variable, 
x3,which necessitates finite moments E[xm], m>2, or 
adequacy of the L2 norm which is not the case with 
economic variables. I prefer to use the symmetry of 
measures of shortfall, i.e. expectation below a certain 

threshold K,  x f (x) dx
−K

∫ compared to x f (x) dx
K
∫ , K 

being a remote threshold for x the source of variation. 

Convex to variations and model error: the 
opposite, as shown in Figure 2. 

Note that whatever is convex to variations is therefore 
convex to model error –given the mathematical 
equivalence between variations and epistemic 
uncertainty.  

Thus as an illustration of the payoffs in Figure 1, take 
the distribution of financial payoffs through time; a 
portfolio that has a floor set at K would have the 

downside shortfall S = x f (x) dx
−K

∫  equaling 0. I have 

been calling such operation the "robustification" or 
"convexification" of the portfolio, making it immune to 
any parameter used in the computation of f(x). 

 

 

 

Figure 2 ANTIFRAGILE: Convex payoff through 
time, or convex errors. 

The typical concavity, and the one that I spent my life 
immersed in, is the one with respect to small 
probabilities, as will be discussed a bit later. 

Mixed Payoffs: 

As shown in Figures 3 and  4, Convexity can be local, 
that is, only present for a Δx of a certain size; it may 
become concave for larger Δx, or vice versa. So more 
technically convexity always needs to be attached to a 
certain size Δx; an infinitesimal Δx would not work in 
practice. Many financial institutions had the illusion of 
convexity, as they were so for small variations, when in 
fact they were not for large disturbances, "tail events". 

 

Figure 3 From Dynamic Hedging, Taleb(1997), 
most payoffs are mixed. 

 

 

Figure 4 Convexity can be just local for a small 
or medium size variation, which is why 
measures need to be broad and fill the tails. 
Most banks have fallen for this trap: the banking 
system accumulated concavity where it was 
invisible. 

Antifragility and Convexity: As we can see from 
Figure 2, convex systems will generally take small 
insults, for massively large gains, concave ones will 
appear more stable. 
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While linear payoffs may appear to be robust, two 
points:1) linear payoffs are rare, 2) we are never sure 
that the payoff is truly linear, particularly when it comes 
to hidden parameters or incompleteness of models —
many nonlinear payoffs have been mistaken for linear 
ones. 

 

V. COMPARATIVE TABLEAU OF ROBUSTNESS 

This document will generalize to cover fragility across 
all these domains using the same notion of fragility to 
perturbations or representational errors. This is a rapid 
presentation; every entry will be explained in later 
sections. 

 
 

FRAGILE 

 

 

ROBUST AND 
ANTIFRAGILE 

Optimized 

 

Includes 
Redundancies 

Short options Long options 

Model Heuristic 

Rationalism  
(economics modeling) 

Empiricism/Reliance 
on time tested heuristics 

Directed search Tinkering (convex 
bricolage) 

Nation state  

--centralized 

 

City State  

-- decentralized 

Debt Equity 

Public Debt Private Debt 

Large Small 

Agent managed Principal managed 

Monomodal Barbell 

Derivative Primitive 

Banks Hedge funds 

Kindle/Electronic 
files 

Book 

Man-designed 
(Craig Venter-style 

Evolution 

intervention) 

Positive heuristics Negative heuristics 

Dr John Fat Tony 

VI. WHERE ERRORS ARE SIGNIFICANT 

     Projects: This convexity explains why model error 
and increased uncertainty lengthens rather than reduce 
expected projects costs and duration. Prof Bent 
Flyvbjerg, has shown ample empirical evidence of that 
effect. 

     Deficits: Convexity effects explain why uncertainty 
lengthens, doesn't shorten expected deficits. Deficits 
are convex to model error; you can easily see it in 
governments chronic underestimation of future deficits. 
If you run into anyone in the Obama administration, 
particularly Larry Summers, make them aware of it —
they don't get the point.  

     Economic Models: Something the economics 
establishment has been missing is that having the right 
model (which is a very generous assumption), but 
being uncertain about the parameters will invariably 
lead to an increase in model error in the presence of  
convexity and nonlinearities.  

As an illustration, say we are using a simple function 

f x,α( ) , where α is supposed to be the average 

expected rate α = α φ(∫ α ) dα . The mere fact that α 

is uncertain might lead to a bias if we perturbate from 
the outside (of the integral). Accordingly, the convexity 
bias is easily measured as  

f (α, x)φ(∫ α ) dα − f ( α φ(α ) dα∫ , x)  

As an example let us take the Bachelier-Thorp option 
equation (often called in the literature the Black-
Scholes-Merton formula10), an equation I spent 90% of 
my adult life fiddling with. I use it in my class on model 
error at NYU-Poly as an ideal platform to explain the 
effect of assuming a parameter is deterministic when in 
fact it can be stochastic11. 

A call option (simplifying for absence of interest rate12) 
is the expected payoff: 

                                                     
 10 See Haug and Taleb (2010). 
11 I am using deterministic here only in the sense that it is 

not assumed to obey a probability distribution; Paul 
Boghossian has signaled a different philosophical meaning to 
the notion of  deterministic. 

12 The technique (which I will use in the rest of the 
discussions) is called a change of probability measure, to 
cancel the effect of the interest rate variable, by assuming it is 
integrated as a numeraire, not ignore its existence --Geman et 
al. 
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C(S0 ,K ,σ ,t) = (S − K )
K

∞

∫ Φ(S0 ,µ,σ t ) dS  

Where , where Φ is the Lognormal distribution, So is the 
initial asset price, K the strike, σ the standard deviation, 
and t the time to expiration. Only S is stochastic within 
the formula, all other parameters are considered as 
descending from some higher deity, or estimated 
without estimation error.  

The easy way to see the bias is by producing a nested 
distribution for the standard deviation σ, say a 
Lognormal with standard deviation V then the true 
option price becomes, from the integration from the 
outside: 

C(S0 ,K ,σ ,t)∫ f (σ ) dσ  

The convexity bias is of course well known by option 
operators who price out-of-the-money options, the 
most convex, at some premium to the initial Bachelier-
Thorpe model, a relative premium that increases with 
the convexity of the payoff to variations in σ. 

Corporate Finance: In short, corporate finance seems 
to be based on point projections, not distributional 
projections; thus if one perturbates cash flow 
projections, say, in the Gordon valuation model, 
replacing the fixed —and known— growth by 
continuously varying jumps (particularly under fat tails 
distributions), companies deemed "expensive", or those 
with high growth, but low earnings, would markedly 
increase in expected value, something the market 
prices heuristically but without explicit reason. 

Portfolio Theory: The first defect of portfolio theory 
and every single theory based on "optimization" is 
absence of uncertainty about the source of parameters 
--while these theorists leave it to the econometricians 
to ferret out the data, not realizing the inconsistency 
that an unknown parameter has a stochastic character. 
Of course the second defect is the use of thin-tailed 
idealized probability distributions13. 

                                                     
13 Note one fallacy promoted by a finance professor: 

Markowitz's portfolio theory entices people to diversify, hence 
it is better than nothing. Wrong: it pushes them to 
overallocate. It does not drive people to take less risks based on 
diversification, but causes them to take more open positions 
owing to perception of offsetting statistical properties —
making them vulnerable to model error, and especially 
vulnerable to the underestimation of tail events.  To see that, 
just consider two investors facing  a choice between three 
securities: cash, A, and B. The investor who does not know the 
statistical properties will allocate say, the portion he does not 
want to lose to cash, the rest into A and B —according to 
whatever heuristic has been in traditional use. The investor 
who thinks he knows the statistical properties,  with Gaussian 
parameters σA, σB, ρA,B will allocate wA, wB in  a way to make the 
total risk at some target level (let us ignore the expected return 
for this). The lower his perception of ρA,B, the worse his 
exposure to model error. Assuming he thinks that the 

VII. DISTRIBUTIONAL FAT TAILS AND CONVEXITY 

I've had all my life much difficulty explaining the 
following two points connecting dots: 

 1) that Kurtosis or the fourth moment was 
equivalent to the variance of the variance; that the 
square variations around E[x2] are similar to E[x4]. 

 2)  that the variance (or any measure of 
dispersion) for a probability distribution maps to a 
measure of ignorance, an epistemological concept. So 
uncertainty of future parameters increases the variance 
of it; hence uncertainty about the variance raises the 
kurtosis, hence fat tails. Not knowing the parameter is a 
central problem.  

The central point behind Dynamic Hedging (1997) is 
the percolation of uncertainty across all higher 
moments; so if one has uncertainty about the variance, 
with a rate of uncertainty called, say V(V) (I dubbed it 
"volatility of volatility"); the higher V(V), the higher the 
kurtosis, and the fatter the tails. Further, if V(V) had a 
variance called V(V(V)), the third order variance, which 
in turn had uncertainty, all the way down to all orders, 
then, simply, one ends with Paretan tails. I had never 
heard of Mandelbrot, or his link of Paretan tails with 
self-similarity, and I needed no fractal argument for 
that. The interesting point is that mere uncertainty 
about models leads immediately to the necessity to use 
power laws for epistemic reasons14. 

                                                     
correlation is 0, he will be overallocated by 1/3 for extreme 
events. But if the poor investor has the illusion that the 
correlation is -1, he will be maximally overallocated to his A 
and B investments. We can repeat the idea for each parameter 
σ and see how lower perception of this σ leads to 
overallocation. 

We can see the convexity of the portfolio risk (accepting σ 
as model error) to changes in correlation. 

This view is similar to Taleb(1997): one is only safe shorting a 
correlation at 1, and buying it at -1 —which seems to 
correspond to what the 1/n heuristic does.  

 
14 Typical derivations of power laws are: hierarchies 

(Cantor sets) multiplicative processes, including preferential 
attachment /cumulative advantage (Zipf, Simon), entropy 
(Mandelbrot), dimentional constraints, critical points, etc. But 
I have never seen the epistemic issue ever presented in spite of 
his dominance of an operator's day to day activity.  
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Another approach is through the notion of epistemic 
infinity. As explained in The Black Swan, Taleb (2010), 
a finite upper bound for a variable may exist, but since 
we do not know where it is, "how high (low)", it  needs 
to be accordingly treated as infinite. So there may be a 
point where distributions become thin-tailed, and cease 
to be scalable, but in the absence of the knowledge 
about them, we need to consider them as fat tailed to 
infinity, hence power laws. 

We already saw from the point that options increase in 
value, with an effect called the "volatility smile"15.  

 

VIII. MODEL ERRORS ARE FAT-TAILED EVEN IN THE 
GAUSSIAN (THIN-TAILED) WORLD16 

First, let me show how tail exposures are extremely 
sensitive to model error regardless of the distribution 
used —something completely missed in the literature. 

Let us start with the mild case of the Gaussian 
distribution (without even fattening the tails). Take a 
measure ζ of shortfall, here:  

 

 

where f(x) is Gaussian with mean µ and standard 
deviation σ.  

We are not using the measure to estimate, but for 
higher order effects to gauge fragility —a procedure 
that is not affected by the reliability of the estimate. 

Difference with the ordinary VAR: This measure 
deviates from the less rigorous ordinary Value-at-Risk 
(VAR) since VAR sets the K for which the probability  

f (x) dx
−∞

−K

∫ corresponds to a fixed percentage, say 

1%. Aside from the difficulty in computation, and the 
limitation of the estimation of small probabilities, it 
severely ignores fat-tail effects of the expected loss 
below the threshold K. Furthermore it cannot be used 
for the estimation of model fragility. 

Now take the function γ showing the relative convexity 
multiplier from changes in σ for a total uncertainty δ ( a 
δ=. 25 means σ can be 25 % lower or 25% higher; a 

                                                     
 
15 By the Breeden-Litzenberger argument, we can see that 

option prices produce risk-neutral probability distributions for 
the underlying assets, so we can look at the problem in the 
inverse direction. 

16 This method was proposed to the staff of the Bank of 
England on Jan 19 2007 as an indicator of robustness for a 
portfolio. I do not believe that anything was done on that. 

γ=1 is no effect, a γ=2 is the doubling the shortfall). 
With δ in [0,1[, and assuming for simplicity µ=0, 

which yields to a closed form solution 

 

The shocking result is that for 10 standard deviations 
(that is, routine events), a 25% uncertainty about σ 
leads to a multiplication of the mass in the tail, causing 
the underestimation of the risk by a factor of 107. But 
we don't need so much; for 20 standard deviations, a 
similar effect is reached with mere rounding error. I 
wonder why those using methods such as Value at Risk 
(VAR) can be so irresponsibly blind! 

Table 1: Underestimation of shortfall in excess 
of K from relative perturbations of 25% up or 
down with the parameter σ in a simple Gaussian 
world 

K, in Standard 
deviations  

Underestimation of 
shortfall  

0 0 

1 0 

2 0.36 

3 2.16 

4 10.13 

5 55.26 

6 406 

7 4,230 

8 62,942 

9 106 

10 4 107 

15 2 1017 

23  2 1041 

 

The worrisome fact is that a perturbation in σ extends 
well into the tail of the distribution in a convex way; a 
portfolio that is sensitive to the tails would explode.  
That is, we are still here in the Gaussian world! Such 
explosive uncertainty isn't the result of fat tails in the 
distribution, merely small imprecision about a future 
parameter. It is just epistemic! So those who use these 
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models while admitting parameters uncertainty are 
necessarily committing a severe inconsistency17 18.  

Of course, uncertainty explodes even more when we 
replicate conditions of the nonGausian real world upon 
perturbating tail exponents, see Taleb (2009). 

Case of a powerlaw distribution 

Take ζ the same shortfall as before ( in excess of K), 
but with another distribution differently parametrized. 

 

where Φ is a powerlaw distribution with tail exponent α 
(note that for the tail the specific powerlaw distribution 
matters little owing to the asymptotic convergence of 
the density to a constant multiplying x-α-1.) 

The shortfall can be written as 

 

The relative bias γ 

 

 

 

 

 

                                                     
17 A conversation with Paul Boghossian convinced me that 

philosophers need to figure out a priori what others need 
empiricism for, merely by reasoning. This argument just 
outlined is entirely an armchair one, does not even question 
the mismatch of the formula to the real world or the choice of 
probability; it just establishes an inconsistency from within the 
use of such models if the operator does not consider that the 
parameters descended from some unquestionable deity. 

18 This, along with the other arguments in Taleb (2010) 
further shows the defects of the notion of "Knightian 
uncertainty", since all tails are uncertain under the slightest 
perturbation. 

The relative bias is milder —it increases with deviations 
but dos not explode. Figures 5 and 6 show the 
difference. 

 

Figure 5   The relative convexity bias explodes in 
the case of a Gaussian distribution. It explodes 
exponentially. 

 

 

Figure 6 Relative convexity bias in the case of a 
Powerlaw — it is linear, even slightly concave. 

IX. LESS IS MORE: A HEURISTIC TO MEASURE MODEL 
ERRORS WITH SIMPLE PERTURBATIONS 

Because of the sensitivity of models to tail errors, one 
can detect fragility by perturbating the tails. In general, 
most of the sensitivity to model error in a portfolio can 
be captured with the following procedure I've been 
using for a long time on portfolios containing nonlinear 
securities.  

First step, calculate the expected Shortfall ζ at 
one σ (which is usually done by bank risk 
management using the same tools to compute 
the VAR19). Then perturbate a Δσ at different 
levels (10%, 25%, 50%) to capture the higher 
moment effects; a portfolio that experiences 
variations will be sensitive to model error; but 

                                                     
19 The problem of the raw VAR is probabilistic: it does not 

fill-in the tail. 
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we will not know whether it is robust or 
fragile.  

Second step, compare the performance at 
+Δσ and -Δσ for detection of convexity 
effects: if profits exceed losses for equivalent 
Δσ, then the portfolio is convex and robust; 
otherwise it is deemed fragile.  

One limitation is that this only reveals the sensitivity up 
to the 4th moment; not higher ones, so a portfolio 
containing very remote payoffs might not react for 
small Δσ, only larger ones (as we said, convexity is 
local). For that, the remedy is to redo it for larger and 
larger Δσ, or, more difficult, have recourse to power 
laws by varying the α exponent (this would fill the tail 
all the way to the asymptote). 

This method is for dimension 1; it can be generalized 
for larger dimensions as one needs to perturbate the 
covariance matrix Σ, without violating the positive-
definite character (there are many techniques from 
decomposition techniques in which one can perturbate 
the principal components or the factors). 

X. WHY LARGE IS CONCAVE, HENCE FRAGILE, THE 
CASE OF SQUEEZES 

The Notion of Squeeze: Squeezes are situations in 
which an operator is obligated to perform an action 
regardless of price, or with little sensitivity to price. It 
can cause a concave payoff since price sensitivity is low 
given the necessity of the action. Say a person needs 
water or some irreplaceable substance; there are no 
choices and no substitutes. He will drive the price 
upwards as a "price for immediacy"20 21.  

There have been many theories of why size is ugly (or 
small is beautiful), but these theories are not based on 
statistical notions and squeezes, the distributions of 
shocks from the environment, rather on qualitative 
matters or organizational theories in management 
characteristically lacking in scientific firmness. Even in 
biology, the problem has been missed completely. For 
instance one can argue the absence of land mammals 
larger than the elephant, but on some theory of ratios 
and physical limitations; but they don't explain absence 
of much larger animals; these biological limits are 
above the actual size we witness. My point here is that 
the environment delivers resources stochastically, with 
fragility to squeezes —an elephant needs more water 
than a mouse, and would, figuratively, pay up for it. 

Naive optimization may lead us to believe in economies 
of scale –since it ignores the stochastic structure that 
results from aggregation of entities, and the associated 

                                                     
20 Taleb and Tapiero (2010) 
21 For the notion of price for immediacy, Grossman & 

Miller (1988) 

vulnerabilities and their costs. However, under a 
nonlinear loss function, increased exposure to rare 
events may have the effect of raising the costs of 
aggregation while giving the impression of benefits –
since the costs will be borne during rare, but large-
impact events. This result is general; it holds not just 
for economic systems, but for biological and mechanical 
ones as well. 

Hidden Risks: Define hidden risks as an unanticipated 
or unknown exposure to a certain stochastic variable 
that elicits immediate mitigation. These stochastic 
shocks can be called “Black Swan” effects, as they are 
not part of the common risks foreseen by the institution 
or the entity involved. These can be hidden risks by 
rogue traders, miscalculation of risk positions 
discovered , or booking errors. An  “unintended 
position” is a hidden risk from the activities of, say, a 
rogue trader that escapes the detection by the bank 
officials, and needs to be liquidated as it makes the 
total risk larger than allowed by the capital of the 
institution. This can be later generalized to any form of 
unintentional risk –errors commonly known in the 
business as “long v/s long” or “short v/s short” –
positions that were carried on the books with a wrong 
sign and constitute the nightmare for operational risk. 
The vicious aspect of these “unintended positions” is 
that the sign (long or short) does not matter; it is 
necessary to reduce that risk unconditionally. Hence a 
squeeze. 

Companies get larger through mergers and industries 
become concentrated, assuming the notion of 
“economies of scale”, and computing the savings from 
the cost reductions and such benefits of scale. 
However, this does not take into account the effect of 
an increase of risks of blowups –in fact, under any form 
of loss or error aversion, and concave execution costs, 
the gains from the increase in size should show a 
steady improvement in performance, punctuated with 
large and more losses, with a severe increase in 
negative skewness.  

Consider a recent event, known as the Kerviel Affair, 
which we simplify as follows.  Société Génerale lost 
close to $7 billion, around $6 billion of which came 
mostly from the liquidation costs  of the positions of 
Jerome Kerviel, a rogue trader, in amounts around $65 
billion (mostly in equity indices). The liquidation caused 
the collapse of world markets by close to 12%. Indeed 
we stress that the losses of $7 billion did not arise from 
the risks but from the loss aversion and the fact that 
execution costs rise per unit. 

Simple Example –Simplification of 
The Kerviel Case 

Consider the following two idealized situations. 
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Situation 1: there are 10 banks with a 
possible rogue trader hiding 6.5  billions, and 
probability p for such an event for every bank 
over one year.  The liquidation costs for $6.5 
billion are negligible. There are expected to be 
10 p such events but with total costs of no 
major consequence. 

Situation 2: One large bank 10 times the 
size, similar to the more efficient Société 
Génerale, with the same probability p, a larger 
hidden position of $65 billion. It is expected 
that there will be p such events, but with $6.5 
losses per event. Total expected losses are p 
$6.5 per time unit –lumpier but deeper and 
with a worse expectation. 

We generalize next by assuming that the hidden 
positions (in absolute value) are power-law distributed 
and can take any positive value rather than a simple 
$6.5 or $65 billion. Further we generalize from the idea 
of hidden position of a rogue trader to hidden excess or 
deficit in inventory that necessitates action, an 
"unintended exposure". 

General Mathematical Derivations: Our random 
variable X is the “unintended exposure”.  Assume the 
size of this unintended position is proportional to the 
capitalization of the institution –for smaller entities 
engage in smaller transactions than larger ones. So we 
are considering the splitting of the risk across N 
companies, with maximal concentration at N=122. 

Probability Distribution: We use for probability 
distribution the variable of all unintended risk ∑Xi where  
Xi are independent random variables, simply scaled as 
Xi =X/N. With k the tail amplitude and α the tail 
exponent,  

π(k, α, X) = α kα x-1-α 

The N-convoluted Pareto distribution for the unintended 
total position N ∑Xi: 

π(k/N, α, X)N 

where N is the number of convolutions for the 
distribution. The mean of the distribution, invariant with 
respect to N, is α k /(α-1). 

 

Losses From Squeeze: For the loss function, take 
C[X]=  – b Xβ , where squeezing costs is a convex 
function of X —the larger X, the more one needs to pay 
up for it. 

Assume for simplicity b=1. We take 4 scenarios that 
should produce various levels of convexity: β= 1 (the 
linear case, in which we would expect that the total 

                                                     
22 The limiting case N=1 corresponds to a mega-large 

institution commonly known as "government". 

losses would be invariant with N), β= 2,3,4,5 the 
various levels of concavity. 

 

 

Figure 7- Various convex  loss functions of 
increasing convexity: -b x β for b=1, a=2,...,5 

 

Resulting distribution of losses: 

Change of stochastic variable: the loss y=C[X] has for 
distribution: 

π[C-1[x]]/C’[C-1[x]] 

It follows a Pareto Distribution with tail amplitude kβ 
and tail exponent α/β 

� 

L1(Y ) = α
β
KαY −1−α /β  

which has for mean 

� 

k βα
α −β

 

For the Sum: Under convolution of the probability 
distribution, in the tails, we end up with asymptotic tail 
amplitude N (k/N)α, (Bouchaud and Potters, 2003, 
section 2.22). 

For the convoluted sum of N firms, the asymptotic 
distribution becomes: 

� 

LN (Y ) = N α
β

K
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
α

Y −1−α /β  

  

with mean (owing to additivity):  

� 

M(α,β,k,N) =
N k

N
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
β

α

α −β
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Next, we check the ratio of losses in the tails for 
different values of the ratio of β over α 

� 

M(α = 3,β /α,k,N =1)
M(α = 3,β /α,k,N =10)

 

 

Figure 8 ratio of losses for N=1 entity/ Losses 
for N=10 entities as β increases. As β reaches α, 
the expectation of the losses becomes infinite. 

Squeezes and Redundancy: We can use the exact 
same equation for inventory management C[X]=  – b 
X β and assume X is the difference between total target 
inventory, and needed inventory. The convexity of the 
slope shows how excess inventory, or, in general, 
whatever lowers squeezability constitutes an insurance. 

Price of Convexity: Convexity is priced, in the L2 
norm, from a result of the stochastic differential 

equation, 
∂f
∂t

= − 1
2
∂2 f
∂X 2 , where the first derivative is 

"time decay" or "premium erosion", and the second the 
convexity effect. But more practically it can priced 
probabilistically by summing up payoffs. 

XI. HOW DO PEOPLE SELL LEFT TAILS? 

1) Outside finance: 

 politics 
 managing large organizations under an agency 

problem (steady one-way bonus) 
 any job in which performance is cosmetically 

evaluated with potential hidden tail risks 
 people worried about their reputation of 

"steady earners" 
 mismatch between bonus frequency and time 

to blowup. 

  

2) Examples of directly negatively skewed bets in 
finance: 

Loans and Credit-Related Instruments: You lend to an 
entity at a rate higher than the risk-free one prevailing 

in the economy. You have a high probability to earn the 
entire interest amount, except, of course in the event of 
default where you may lose (depending on the recovery 
rate) around half your investment. The lower the risk of 
default, the more asymmetric the payoff. The same 
applies to investments in high yielding currencies that 
are pegged to a more stable one (say the Argentine 
peso to the dollar) but occasionally experience a sharp 
devaluation. 

Derivative instruments. A trader sells a contingent 
claim. If the option is out-of-the-money the payoff 
stream for such strategy is frequent profits, infrequent 
large losses, in proportion to how far out of the money 
the option is. It is easy to see in the volumes that most 
traded options are out-of-the-money23. Note that a 
“delta hedged” such strategy does not significantly 
mitigate such asymmetry, since the mitigation of such 
risk of large losses implies continuous adjustment of the 
position, a matter that fails with discontinuous jumps in 
the price of the underlying security. A seller of an out-
of-the money option can make her profit as frequent as 
she wishes, possibly 99% of the time by, say selling on 
a monthly basis options estimated by the market to 
expire worthless 99% of the time. 

Arbitrage. There are classes of arbitrage operations 
such as: 1) “merger arbitrage” in which the operator 
engages in betting that the merger will take place at a 
given probability and loses if the merger is cancelled 
(the opposite is called a “Chinese”).  These trades 
generally have the long odds against the merger. 2) 
“Convergence trading” where a high yielding security is 
owned and an equivalent one is shorted thinking that 
they converge to each others, which tends to happen 
except in rare circumstances.  

The hedge funds boom caused a proliferation of 
packaged instruments of some opacity that engage in a 
variety of the above strategies –ones that do let 
themselves be revealed through naive statistical 
observation.  

2)  Example  of comparatively skewed bets:   

Covered Calls Writing: Investors have long engaged in 
the “covered write” strategies in which the operator 
sells an option against his portfolio which increases the 
probability of a profit in return for a reduction of the 
upside.  There is an abundant empirical literature on 
covered writes (see Board, Sutcliffe and Patrinos, 2000, 
for a review, and Whaley, 2002 for a recent utility-
based explanation) in which fund managers find gains 
in utility from capping payoffs as the marginal utility of 
gains decreases at a higher asset price. Indeed the fact 
that individual investors sell options at cheaper than 
their actuarial value can only be explained by the utility 
effect. As to a mutual fund manager, doing such 

                                                     
23 See Wilmott(1998) and Taleb (1997) for a discussion of 

dynamic hedging properties for an option seller. 
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“covered writing” against her portfolio increases the 
probability of beating the index in the short run, but 
subjects her to long term underperformance as she will 
give back such outperformance during large rallies.  

 

XII. MORAL HAZARD & HIDDEN LEFT TAIL 

Why are we suckers for hidden left tails exposures? The 
combination of moral hazard and psychological 
confusion about statistical properties from small 
sample, two effects: crooks of randomness and fools of 
randomness24. 

Taleb (2004a, 2004b) presented the interplay of 
psychological issues related to size, to the  properties of 
a Left-skewed Payoff stream25:  

Property 1: Camouflage of the mean and variance.  

The true mean of the payoff is different from 
the median, in proportion to the skewness of 
the bet. A typical return will, say, be higher  
than the expected return. It is consequently 
easier for the observer of the process to be 
fooled by the true mean particularly if he 
observes the returns without much ideas 
about the nature of the underlying generator. 
But things are worse for the variance as most 
of the time it we be lower than the true one 
(intuitively if a shock happens 1% of the time 
then the observed variance over a time 
window will decrease between realizations 
then sharply jump after the shock).  

Property 2: Sufficiency of sample size.  

It takes a considerably longer sample to 
observe the properties under a skewed 
process than otherwise. Take a bet with 99% 
probability of making G and 1% probability of 
losing L; 99% of the time the properties will 
not reveal themselves –and when they do it is 
always a little late as the decision was made 
before. Contrast that with a symmetric bet 
where the properties converge rather rapidly. 

Property 3: The smooth ride effect.  

As we said the observed variance of the 
process is generally lower than the true 
variance most of the time. This means, simply, 
that the more skewness, the more the process 
will generate steady returns with smooth ride 
attributes, concentrating the variance in a brief 
period, the brevity of which is proportional to 

                                                     
24 I owe the metaphor crooks of randomness to Nicolas 

Tabardel. 
25 John Kay and others call this generously a "Taleb 

Distribution". 

the variance. In another word, an investor 
has, without a decrease in risk, a more 
comfortable ride most of the time, with an 
occasional crash. 

 

XIII. CONCLUSION 

This document sets the basic framework for identifying 
robustness and fragility. Taken to its logical extensions, 
it should generate measures of comparative fragility for 
the measurement of tail events. 
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a b s t r a c t

This paper establishes the case for a fallacy of economies of scale in large aggregate
institutions and the effects of scale risks. The problem of rogue trading and excessive risk
taking is taken as a case example. Assuming (conservatively) that a firmexposure and losses
are limited to its capital while external losses are unbounded, we establish a condition for
a firm not to be allowed to be too big to fail. In such a case, the expected external losses
second derivativewith respect to the firm capital at risk is positive. Examples and analytical
results are obtained based on simplifying assumptions and focusing exclusively on the risk
externalities that firms too big to fail can have.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

‘‘Too Big to Fail’’ is a dilemma that has plagued economists, policy makers and the public at large. The lure for ‘‘size’’
embedded in ‘‘economies of scale’’ and Adam Smith factories have important risk consequences that have not always been
assessed at their proper costs or properly defined. The presumption that the manufacturing sector has convex production
functions has fueled the growth of enterprises to sizes that may be both too large to manage, and have losses too large to
sustain. This is the case for industrial giants such as GM that have grown into a complex and diversified global enterprise
that have accumulated costs too large tomaintain. This is also the case for banks that are strategically focused and bear risks
that are often ignored. Banks draw their legal rights from a common trust, to manage the supply and the management of
money for their own and the common good. The consequences of such failures, overflowing into the commons, far outstrip
their direct losses. When banks are perceived too big to fail, they have a greater propensity to assume risks, to ‘‘rule the
commons’’, price their services unrelated to their costs or quality and exercise unduly their market power.

Sizemay lead such firms to assume leverage risks that are unsustainable. This is the casewhenbanks’ bonuses are indexed
to short term performance, at the expense of hard to quantify risk externalities. These risks arise when all costs and benefits
are not incorporated by themarket. Externality is therefore an expression of market failure. For banks that are too big to fail,
these risk externalities are acute. For example, Frank Rich (The New York Times, Goldman Can Spare You a Dime, October
18, 2009) has called attention to the fact that ‘‘Wall Street, not Main Street, still rules Washington’’. Similarly, Rolfe Winkler
(Reuters) pointed out that ‘‘Main Street still owns much of the risk while Wall Street gets all the profits’’. Further, a recent
study by the National Academy of Sciences has pointed out to extremely large hidden costs to the energy industry—costs
that are not accounted for by the energy industry, but assumed by the public at large.

Banks and Central Banks rather than Governments, are entrusted to manage responsibly the monetary policy—not to be
used for their own and selfish needs, not to rule the commons, but to the betterment of society and the supply of the credit
needed for a proper functioning of financial markets. A violation of this trust has contributed to a financial meltdown and
to the large consequences borne by the public at large. In this case, ‘‘too big to fail banks’’ have contributed to an immense
negative externality—costs experienced by the public at large. Thus, banks have been endowedwith this trust without being

∗ Corresponding author. Tel.: +1 212 9881421; fax: +1 717 2603653.
E-mail address: ctapiero@poly.edu (C.S. Tapiero).
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party to the transactions that haveproduced such a financialmeltdown. If a firm’s negative externalities are not compensated
by their positive externalities or appropriately regulated, then the social risks can be extremely damaging. In a recent New
York Times article (Sunday Business, section, October 4, 2009), Gretchen Morgenson, referring to a research paper of Dean
Baker and Travis McArthur, indicated the effects of selective failures, letting selected banks grow larger and ‘‘subsidized’’ at
a cost of over 34 Billion dollars yearly over an appreciable amount of time.

A naive optimization to size that does not recognize the nonlinearities of the risks of scale, the risks of dependence they
induce and convex their risk externalities, may lead to firmswhich cannot be economically sustainable [1,2]. Rather, wemay
experience a risk of blowup. In fact, under any form of loss or error aversion, and concave execution costs, gains from an
increase in size should show a steady improvement in performance, punctuated with large and more losses, with a severe
increase in negative skewness [3,4].

Under a nonlinear loss function, increased exposure to rare and latent events may have the effect of raising costs of
aggregation while giving the impression of benefits — since costs will be borne during rare, but large-impact events. This
result is general. It holds not just for economic systems, but for biological, industrial and mechanical ones as well. For
example, Fujiwara [5], using an exhaustive list of Japanese bankruptcy data in 1997 (see also Refs. [6–9,4]) pointed out
to firms failure regardless of their size. Further, since the growth of firms has been fed by debt, the risk borne by large firms
seems to have increased significantly—threatening both the creditor and the borrower. In fact, the growth of size through
a growth of indebtedness combined with ‘‘too big to fail’’ risk attitudes has ushered, has contributed to a moral hazard
risk, with firms assuming non-sustainable growth strategies on the one hand and important risk externalities on the other.
Furthermore, when size is based on intensely networked firm (such as large ‘‘supply chains’’) supply chain risks (see also
Refs. [10–12]) may contribute as well to the costs of maintaining such industrial and financial organizations. Saito [13]
for example, while examining inter-firm networks noted that larger firms tend to have more inter-firms relationships
than smaller ones and are therefore more dependent, augmenting their risks. In particular, they point out that Toyota
purchases intermediate products and raw materials from a large number of firms; maintaining close relationships with
numerous commercial and investment banks; with a concurrent organization based on a large number of affiliated firms.
Such networks have augmented both dependence and supply chains risks. Such dependence is particularly acute in some
firms where one supplier may control a critical part needed for the proper function of the whole firm. For example, a small
plant in Normandie (France) with no more than a hundred employees could strike out the whole Renault complex. By the
same token, a small number of traders at AIG could bring such a ‘‘too big to fail’’ firm to a bankrupt state. This networking
growth is thus both a result and a condition for the growth to sizeable firms of scale free characteristic (see also Refs. [9,8]).
Simulation experiments to that effect were conducted by Alexsiejuk and Holyst [14] while constructing a simple model of
bank bankruptcies using percolation theory on a network of cooperating banks (see also Stauffer on percolation theory [15]).
Their simulation have shown that sudden withdrawals from a bank can have dramatic effects on the bank stability and may
force a bank into bankruptcy in a short time if it does not receive assistance fromother banks.More importantly however, the
bankruptcy of a simple bank can start a contagious failure of banks concluded by a systemic financial failure. As a result, too
big to fail and its many associated moral hazard and risk externalities is a presumption that while driving current financial
policy and protecting some financial and industrial conglomerates (with other entities facing the test of the market on their
own and subsidizing such a policy), can be extremely risky for the public at large.

Size for such large entities thus matters as it provides a safety net and a guarantee by public authorities that whatever
their policies, their survivability will be ascertained for the greater good and at the expense of public funding. The rationality
‘‘too big to fail’’ is therefore misleading, based on a fallacy that negates the risk of size and does not account for the
omnipresent effects of latent, dependent and rare risks as well as their dependent moral hazard and risk externalities.

Scale is neither necessarily robust, in particular with respect to off-model risks. Under loss aversion, the gains from a
merger may show a steady improvement in performance, punctuated with large losses, with severe increases in skewness.
The essential question is therefore can economies of scale savings compensate their risks. Such an issue has been implicitly
recognized by Obama’s administration proposal in Congressional committees calling for banks to hold more capital with
which to absorb losses. The bigger the bank, the higher the capital requirement should be (New York Times, July, 27, 2009,
Editorial). However such regulation does not protect the ‘‘commons’’ from the risk externalities that banks create and the
common sustains.

To assess the effects of size and their risk externalities, this paper considers a particular and simple case based on rogue
traders’ risks and their effects on both a firm’s loss and their risk externalities. An example is used to demonstrate that rogue
trading or excessive risk taking can have significant impact on a firm risk exposure and on external losses in case of failure
— risks that augment significantly, the larger the size of the firm.

2. Too big to fail and hidden risks

Consider the event, known as the Kerviel affair, which we simplify as follows. Societe Generale lost close to $7 Billions
dollars, $6 Billions of which came mostly from the liquidations costs of the (hidden) positions of Jerome Kerviel, a rogue
trader. In addition, it contributed to external losses that we estimate something around $65 Billions, coming from the
liquidation costs of other firms reacting to the meltdown. The former are risks that the bank sustained while the latter is a
cost 10 times larger which points out to the systemic risk externalities. These externalities are side effect of the liquidation
caused the collapse of world markets by close to 12%!! These extraordinary losses did not put in question the continuity
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of Societe Generale but put an important and disproportionate strain on the financial system. This situation has generated
consequential externality losses because they were signaling a lack of controls in a bank too big to fail, unable to manage
its hidden risks and at the same time created a lack of confidence reverberating in the financial supply chain of Societe
Generale. Uncertainty regarding the system as a whole, dominated by banks presumed too powerful and too big to fail was
put in question aswell. Banks, and in particular large banks, are privy to a trust tomaintain the safe operation of the financial
system for the betterment of the economy. When such trusts is violated, explicitly through the behavior of their managers
or implicitly, by an unreasonable risk taking policy, uncertainty sets in, producing costs commensuratewith the size of these
firms.

Consider traders’ hidden positions defined as risks that are unanticipated or of unknown exposure and resulting in
stochastic shocks. These shocks can be called ‘‘Black Swan’’ effects, as they are not part of the common (statistical) risks
foreseen by the institution or the entity involved. These shocks are assumed to be both unpredictable in a statistical sense
and therefore with large variance or jump processes with important consequences that transcend the bank. These may be
hidden risks by rogue traders, miscalculation of risk positions discovered or booking errors, or action taken underscoring an
uncontrollable risk taking culture. An ‘‘unintended position’’ is thus a hidden risk from the activities of a rogue trader that
escapes the detection by the bank officials, and needs to be liquidated as it makes the total risk larger than allowed by the
capital of the institution while at the same time contributes to a risk overflow to the financial system. This risk can be later
generalized to any form of unintentional risk – errors commonly known in the business as ‘‘long v/s long’’ or ‘‘short v/s short’’
– positions that were carried on the books with a wrong sign (and constitute the nightmare for operational risk). The vicious
aspect of these ‘‘unintended positions’’ is that the sign (long or short) does not matter; it is necessary to reduce that risk
unconditionally. Given the multiplying risk factor of large banks, these failings—even if small, assume large consequences
for the common financial system they presumably ‘‘rule’’.

Given the nature of a hidden or speculative position, we assume that the positions (in absolute value) has a potential
loss probability distribution bounded above by the firm capital (its size) W or f (x : W ) = x ∈ [0,W ). In some cases, the
risk exposure of such trades may be larger than the firm capital and therefore our assumption may be assumed to be a
conservative one. Thus, given a firm loss due to a rogue trader or due to uncontrolled risk of its trading department, we let
the total loss, including external losses be given by g(y|x), y ∈ [x, ∞) , y ≥ 0. As a result, the joint probability distribution
of global financial and firm losses is f (y, x) = g(y|x)f (x : W ), y ∈ [x, ∞) , 0 ≤ x ≤ W . The external loss of a firm whose
capital isW has thus probability and cumulative distributions:

g(y) =
� W

0
g(y|x)f (x : W )dx and G(Y ) =

� W

0

� Y

x
g(y|x)f (x : W )dx.

The effects of size on the aggregate loss are thus a compounded function of the probabilities of losses of the firm and their
external costs. If a firm has a loss whose external consequences (the loss y are extremely large), then theymay be deemed to
be ‘‘too big to fail’’. ‘‘Too big to fail’’ entails therefore a responsibility by the firms that ought to be regulated and controlled
extensively. In this context, ‘‘too big to fail’’ is an issue whose relevance may be measured by its risk externalities. For
example, a bank ‘‘too big to fail’’ that assumes risks for the sake of excess short terms profits that are not sustainable is in
fact misusing its charter to serve the ‘‘commons’’. Such banks are thus irresponsible ‘‘polluters’’.

3. An example

The example we consider below assumes a mixture Pareto power conditional probability distribution for all losses,
including both the firm and external losses. External losses are bounded by the firm losses from below, assumed to be
fractional in the hazard rate and bounded by its capital. In particular we have used a truncatedWeibull distribution. Such an
approach differs of course from the Copula approach that models the co-dependence of losses by the marginal distribution
of each distribution. It also differs from a generalization of the Pareto distribution that accounts for a potential correlation
between the firm and the external losses. Both approaches are not be applicable as external losses depend necessarily
on the firm losses but not vice versa. Further, the use of fractal models, based on modeling a process volatility growth
with additional parameters, is for the same reasons, not applicable. Although, a firm loss can be modeled as a truncated
Wiener–Levy or fractalmodel, used to randomizes external losses (in conjunctionwith other factors, such asmarket liquidity
and other macroeconomic variables). The example we thus consider is of course selected for simplicity and to highlight the
effects of a firm size on the external losses.

Explicitly, say that:

g(y|x) = γx

(x)−γx
(y)−γx−1 , y ≥ x, E(y|x) = x

�
γx

1 − γx

�
, 0 < γx < 1,

∂γx

∂x
> 0.

In other words, the distribution parameter may be interpreted as the ‘‘odds’’ that a firm loss has on external and global
losses. The larger the ‘‘odds’’ the larger the risk externalities. In case of the Kerviel affair, a firm loss of 7 Billion dollars had
an external loss of 65 Billion dollars. In this case, the parameter equals 7 γ7

1−γ7
= 65 + 7 or γ7 = 72/79 = 0.911 and

∂E(y|x)
∂γx

> 0. By the same token since,

∂E(y|x)
∂x

=
�

γx

1 − γx

�
+ x

�
∂γx/∂x

(1 − γx)
2

�
> 0 and ∂γx/∂x > 0.
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For example, say that γx has a logit distribution, or:

γx = F(Sx) = eSx

1 + eSx
= 1

1 + eSx
,

∂γx

∂Sx
= e−Sx

�
1 + e−Sx

�2 > 0.

Then: γx
1−γx

= eSx and E(y|x) = xeSx with Sx a score for a firm ‘‘too big to fail’’. Such a score may be defined as a function
of both the loss and economic environmental conditions. A bank whose internal loss is its capital, contribute then to an
expected loss of:

E(y|W ) = WeSW .

In other words, in case of the Kerviel affair, assuming a loss of capital of 50 Billion dollars, the external (total loss) is
E(y|50) = 514.28 Billion dollars.

The loss probability distribution is then:

g(y) =
� W

0

γx

y

�y
x

�−γx
f (x : W )dx and G(Y ) =

� W

0

�
Y
x

�−γx

f (x : W )dx − 1.

The probability of a loss greater than Y and its hazard rate are therefore,

2 − G(Y ) = 2 −
� W

0

�
Y
x

�−γx

f (x : W )dx and h(Y ) =
� W
0

γx
Y

� Y
x

�−γx f (x : W )dx

2 −
� W
0

� Y
x

�−γx f (x : W )dx
.

If a firm’s expected external loss is E(y : W ) then if ∂E(y : W )/∂W > 0 and ∂2E(y : W )/∂W 2 > 0, then ‘‘size’’ contributes
to a nonlinear and increasing growth in external losses—losses that are risk externalities.

For demonstration purposes, say that the probability distribution f (x : W ) is a constrained extreme (Weibull) distribution
defined by,

f (x : W ) = f (x)
F(W )

= c
ζ

�
x
ζ

�c−1
e−(x/ζ) c

1 − e−(W/ζ) c
.

The loss probability distribution and its cumulative distribution function are then:

g(y) = cζ 1−c

ζ
�
1 − e−(W/ζ) c

�
� W

0
γxy−γx−1xγx+c−1e−(x/ζ) cdx and

G(Y ) = cζ 1−c

ζ
�
1 − e−(W/ζ) c

�
� W

0
Y−γx xγx+c−1e−(x/ζ) cdx − 1.

With expected losses:

E(y) = cζ 1−c

ζ
�
1 − e−(W/ζ) c

�
� W

0

� ∞

x
γxy−γx xγx+c−1e−(x/ζ) cdydx

= cζ 1−c

ζ
�
1 − e−(W/ζ) c

�
� W

0
γx

x1−γx

1 − γx
xγx+c−1e−(x/ζ) cdx = cζ 1−c

ζ
�
1 − e−(W/ζ) c

�
� W

0

γx

1 − γx
xce−(x/ζ) cdx.

The effects of the firm capital size on the expected losses are thus:

∂E(y)
∂W

=
�
cζ−c γW

1 − γW
W − E(y)

�
1

W 1−c
�
e(W/ζ) c − 1

� > 0 since cζ−c γW

1 − γW
W > E(y).

The second derivative leads to:

�
1 − e−(W/ζ) c

�2

Wc−1e−(W/ζ) c
∂2E(y)
∂W 2 =





cζ−c ∂γW/∂W
(1 − γW )2

W − cζ−cWc−1e−(W/ζ) c + cζ−cγW

(1 − γW )

−
�
cζ−c γW

1 − γW
W − E(y)

�
Wc−1e−(W/ζ) c

�
1 − e−(W/ζ) c

�





+
�
1 − e−(W/ζ) c

� �
(c − 2)

W
− ζ−ccWc−1

�

or
�
1 − e−(W/ζ) c

�2

Wc−1e−(W/ζ) c
∂2E(y)
∂W 2 = cζ−c

�
γW

(1 − γW )
+ ∂γW/∂W

(1 − γW )2
W + c − 2

W

�
1 − e−(W/ζ) c

�
− 1

W 1−c

�
− ∂E(y)

∂W
.
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Since
∂γW/∂W
(1 − γW )2

W � c − 2
W

�
1 − e−(W/ζ) c

�
− 1

W 1−c

The condition for a positive second derivative is:

cζ−c γW

(1 − γW )

�

1 − 1
W−c

�
e(W/ζ) c − 1

�
�

+ cζ−c ∂γW/∂W
(1 − γW )2

+ E(y)
W 1−c

�
e(W/ζ) c − 1

� > 0

which is guaranteed ifWc > ζ c ln (1 + Wc)
These conditions establish therefore the conditions for an accelerating loss the larger the firm—a loss that may be far

larger than the firm capital loss.

4. Conclusion

The purpose of this paper was to to indicate that size matters in a nonlinear way and that the issues that pertain to
managing evaluating firms that are too big to fail require a far greater awareness and a regulation of the risk externalities
that these institutions represent. Firms that are ‘‘too big to fail’’ are ‘‘polluters’’ either by design when they over-leverage
their financial bets or their speculative positions or when they are struck by a Black Swan. This is the case because their
losses have far greater significance than their narrow well being affecting investors that had no part in their actions. In this
sense, their costs are a risk externality to be confronted and regulated as such. For this reason, regulation of firms that are
too big too fail, require that greater attention be given to their consequential external risks rather than application of VaR
techniques to protect their internal losses. The growth of economic units large enough to integrate their external risk is
of course not appropriate since the moral hazard risks resulting from their market power will be too great. Similarly, total
controls, total regulation, taxation, nationalization etc. are also a poor answer to deal with risk externalities. Such actions
may stifle financial innovation and technology and create disincentives to an efficient allocation of money. Coase observed
that a key feature of externalities are not simply the result of one CEO or Bank, but the result of combined actions of two
or more parties. In case of the financial sector, there are two parties, Banks that are ‘‘too big to fail’’ and the Government
as a stand in for the public. Banks are entrusted rights granted by the Government and therefore any violation of the trust
(and not only a loss by the bank) would justify either the removal of this trust or the takeover of the bank. A bargaining
over externalities would, economically lead to Pareto efficient solutions provided that banking and public rights are fully
transparent. However, the non-transparent bonuses that CEOs of large banks apply to themselveswhile not a factor in banks
failure is a violation of the trust signaled by the incentives that banks have created tomaintain the payments they distribute
to themselves.
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Outside the Platonic world of financial models, assuming the underlying distribution is a scalable ‘‘power

law,’’ we are unable to find a consequential difference between finite and infinite variance models—a central

distinction emphasized in the econophysics literature and the financial economics tradition. Although distri-

butions with power law tail exponents a > 2 are held to be amenable to Gaussian tools, owing to their ‘‘finite

variance,’’ we fail to understand the difference in the application with other power laws (1 < a < 2) held to

belong to the Pareto-Lévy-Mandelbrot stable regime. The problem invalidates derivatives theory (dynamic

hedging arguments) and portfolio construction based on mean-variance. This article discusses methods to

deal with the implications of the point in a real world setting. ! 2008 Wiley Periodicals, Inc. Complexity 00:

000–000, 2008
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1. THE FOUR PROBLEMS OF PRACTICE

T his note outlines problems viewed solely from the

vantage point of practitioners of quantitative

finance and derivatives hedging, and the uneasy

intersection of theories and practice; it aims at asking

questions and finding robust and practical methods

around the theoretical difficulties. Indeed, practitioners

face theoretical problems and distinctions that are not

visibly relevant in the course of their activities; further-

more, some central practical problems appear to have

been neglected by theory. Models are Platonic: going

from theory to practice appears to be a direction that is

arduous to travel. In fact, the problem may be even

worse: seen from a derivatives practitioner’s vantage

point, theory may be just fitting practice (albeit with

considerable delay), rather than influence it. This article

is organized around a class of such problems, those related

to the effect of power laws and scalable distributions on

practice. We start from the basis that we have no evidence

against Mandelbrot’s theory that financial and commodity

markets returns obey power law distributions [1, 2(a,b,c)],

(though of unknown parameters). We do not even have an
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argument to reject it. We therefore need to find ways to

effectively deal with the consequences.

We find ourselves at the intersection of two lines of

research from which to find guidance: orthodox financial

theory and econophysics. Financial theory has been rather

silent on power laws (while accepting some mild forms of

‘‘fat tails’’ though not integrating them or taking them to

their logical consequences)—we will see that power laws

(even with finite variance) are totally incompatible with

the foundations of financial economics, both derivatives

pricing and portfolio theory. As to the econophysics litera-

ture: by adopting power laws, but with artificial separation

parameters, using a 5 2, it has remedied some of the defi-

cits of financial economics but has not yet offered us help

for our problems in practice.1

We will first identify four problems confronting practi-

tioners related to the fat tailed distributions under treat-

ment of common finance models: (1) problems arising

from the use by financial theory, as a proxy for ‘‘fat tails,’’

of milder forms of randomness too dependent on the

Gaussian (non-power laws); (2) problems arising from the

abstraction of the models and properties that only hold

asymptotically; (3) problems related to the temporal inde-

pendence of processes that lead to assume rapid conver-

gence to the Gaussian basin; and (4) problems related to

the calibration of scalable models and to the fitting of pa-

rameters.

Note here that we provide the heuristic attribute of a

scalable distribution as one where for some ‘‘large’’ value

of x, P > x ! Kx2a , where P > x is the ‘‘exceedant proba-

bility,’’ the probability of exceeding x, and K is a scaling

constant.2 (Note that the same applies to the negative do-

main). The main property under concern here, which illus-

trates its scalability, is that, in the tails, P > nx/P > x

depends on n, rather than x.

The Criterion of Unboundedness: One critical point is

answering the controversial question ‘‘is the distribution a

power law?’’ Unlike the econophysics literature, we do not

necessarily believe that the scalability holds for x reaching

infinity; but, in practice, so long as we do not know where

the distribution is eventually truncated, or what the upper

bound for x is, we are forced operationally to use a power

law. Simply as we said, we cannot safely reject Mandelbrot

[1, 2(a,b,c)]. In other words, it is the uncertainty concern-

ing such truncation that is behind our statement of scal-

ability. It is easy to state that the distribution might be log-

normal, which mimics a power law for a certain range of

values of x. But the uncertainty coming from where the

real distribution starts becoming vertical on a log–log plot

(i.e., a rising toward infinity) is central—statistical analysis

is marred with too high sample errors in the tails to help

us. This is a common problem of practice versus theory

that we discuss later with the invisibility of the probability

distribution3 (For a typical misunderstanding of the point,

see Ref. [11]).

Another problem: The unknowability of the upper

bound invites faulty stress testing. Stress testing (say, in

finance) is based on a probability-free approach to simu-

late a single, fixed, large deviation—as if it were the known

payoff from a lottery ticket. However the choice of a ‘‘max-

imum’’ jump or a ‘‘maximum likely’’ jump is itself prob-

lematic, as it assumes knowledge of the structure of the

distribution in the tails.4 By assuming that tails are power-

law distributed, though of unknown exact parameter, one

can project richer sets of possible scenarios.

1.1. First Problem—The Effect of the Reliance on
Gaussian Tools and the Dependence on the L2 Norm
The finance literature uses variance as a measure of dis-

persion for the probability distributions, even when deal-

ing with fat tails. This creates a severe problem outside

the pure Gaussian nonscalable environment.

Financial economics is grounded in general Gaussian

tools, or distributions that have all finite moments and

correspondingly a characteristic scale, a category that

includes the Log-Gaussian as well as subordinated proc-

esses with nonscalable jumps such as diffusion-Poisson,

1There has been a family of econophysics papers that derive

their principal differentiation from Mandelbrot [1] on the

distinction between Levy-Stable basins and other power

laws (infinite vs. finite variance) [3–9] and others.

2In finance, we generally assume x to be the logarithmic

return log(Pt/Pt2Dt) where P is the price, t is the period,

and Dt is the increment.

3The inverse problem can be quite severe, leading to the

mistake of assuming stochastic volatility (with the conven-

ience of all moments) in place of a scale-free distribution

(or, equivalently, one of an unknown scale). Cont and

Tankov [10] show how a Student T with 3 degrees of free-

dom (infinite kurtosis) will mimic a conventional stochastic

volatility model.

4One illustration of how stress testing can be deemed dan-

gerous—as we do not have a typical deviation—is provided

by the management of the 2007–2008 subprime crisis.

Many firms, such as Morgan Stanley, lost large sums of

their capital in the 2007 subprime crisis because their stress

test underestimated the outcome, yet was compatible with

historical deviations (see Ref. [12]).

2 C O M P L E X I T Y Q 2008 Wiley Periodicals, Inc.
DOI 10.1002/cplx
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regime switching models, or stochastic volatility methods

(see Refs. [13–16]), outside what Mandelbrot [2(a,b,c)]

bundles under the designation scale-invariant or fractal

randomness.

All of these distributions can be called ‘‘fat-tailed,’’ but

not scalable in the above definition, as the finiteness of all

moments makes them collapse into thin tails:

1. for some extreme deviation (in excess of some known

level), or

2. rapidly under convolution, or temporal aggregation.

Weekly or monthly properties are supposed to be closer,

in distribution, to the Gaussian than daily ones. Like-

wise, fat tailed securities are supposed to add up to

thin-tailed portfolios, as portfolio properties cause the

loss of fat-tailed character rather rapidly, thanks to the

increase in the number of securities involved.

The dependence on these ‘‘pseudo-fat tails,’’ or finite

moment distributions, led to the building of tools based

on the Euclidian norm, such as variance, correlation, beta,

and other matters in L2. It makes finite variance necessary

for the modeling, and not because the products and finan-

cial markets naturally require such variance. We will see

that the scaling of the distribution that affect the pricing

of derivatives is the mean expected deviation, in L1, which

does not justify such dependence on the Eucledian metric.

The natural question here is: why do we use variance?

Although it may offer some advantages, as a ‘‘summary

measure’’ of the dispersion of the random variable, it is of-

ten meaningless in an environment in which higher

moments do not lose significance.

But the practitioner use of variance can lead to addi-

tional pathologies. Goldstein and Taleb [17] show that

most professional operators and fund managers use a

mental measure of mean deviation as a substitute for var-

iance, without realizing it: because the literature focuses

exclusively on L2 metrics, such as ‘‘Sharpe ratio,’’ ‘‘portfolio

deviations,’’ or ‘‘sigmas.’’ Unfortunately, the mental repre-

sentation of these measures is elusive, causing a substitu-

tion. There seems to be a serious disconnect between de-

cision making and projected probabilities. Standard devia-

tion is exceedingly unstable compared with mean

deviation in a world of fat tails (see an illustration in

FigureF1 1).

1.2. Second Problem—Life Outside the Asymptote:
Questions Stemming from Idealization Versus Practice
The second, associated problem comes from the idealiza-

tion of the models, often in exactly the wrong places for

practitioners, leading to the reliance on results that work

in the asymptotes, and only in the asymptotes. Further-

more, the properties outside the asymptotes are markedly

different from those at the asymptote. Unfortunately, oper-

ators live far away from the asymptote, with nontrivial

consequences for pricing, hedging, and risk management.

1.2.1. Time Aggregation

Take the example of a distribution for daily returns that

has a finite second moment, but infinite kurtosis, say a

power-law with exponent <4, of the kind we observe rou-

tinely in the markets. It will eventually, under time aggre-

gation, say if we lengthen the period to weekly, monthly,

or yearly returns, converge to a Gaussian. But this will

only happen at infinity. The distribution will become

increasingly Gaussian in the center, but not in the tails.

Bouchaud and Potters [18] show how such convergence

will be extremely slow, at the rate of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logðnÞ

p
standard

deviations, where n is the number of observations. A dis-

tribution with a power law exponent a > 2, even with a

million convolutions, will eventually behave like a Gaus-

sian up until about 3 standard deviations but conserve the

power-law attributes outside of such regime. So, at best

we are getting a mixed distribution, with the same fat tails

as a non-Gaussian and the tails are where the problems

reside.

More generally, the time-aggregation of probability

distributions with some infinite moment will not obey

the Central Limit Theorem in applicable time, thus leav-

ing us with nonasymptotic properties to deal with in an

effective manner Indeed, it may not be even a matter of

time-window being too short, but for distributions with

finite second moment, but with an infinite higher

moment, for CLT to apply we need an infinity of convolu-

tions.

FIGURE 1

Distribution of the monthly STD/MAD ratio for the SP500 between
1955 and 2007. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Q 2008 Wiley Periodicals, Inc. C O M P L E X I T Y 3
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1.2.2. Discreteness

We operate in discrete time while much of the theory con-

cerns mainly continuous time processes [19, 20], or finite

time operational or computational approximations to true

continuous time processes ([21]; review in Ref. [22]).

Accordingly, the results coming from taking the limits of

continuous time models, all Gaussian-based (nonscalable)

pose difficulties in their applications to reality.

A scalable, unlike the Gaussian, does not easily allow

for continuous time properties, because the continuous

time limit allowing for the application of Ito’s lemma is

not reached, as we will see in Section 2.2.

1.3. Third Problem—Stability and Time Dependence
Most of the mathematical treatment of financial processes

reposes on the assumption of time-independence of the

returns. Whether it is for mathematical convenience (or

necessity) it is hard to ascertain; but it remains that most

of the distinctions between processes with finite second

moment and others become thus artificial as they reposes

heavily on such independence.

The consequence of such time dependence is the

notion of distributional ‘‘stability,’’ in the sense that a dis-

tribution loses its properties with the summation of ran-

dom variables drawn from it. Much of the work discrimi-

nating between Levy-fat tails and non-Levy fat tails

reposes on the notion that a distribution with tail expo-

nent a < 2 is held to converge to a Levy stable basin,

while those with a $ 2 are supposed to become Gaussian.

The problem is that such notion of independence is a

bit too strong for us to take it at face value. There may be

serial independence in returns, but coexisting with some

form of serial dependence in absolute returns, and the

consequences on the tools of analysis are momentous.5

In other words, even in the asymptote, a process with

finite variance that is not independently distributed is not

guaranteed to become Gaussian.

This point further adds to the artificiality of the distinc-

tion between a < 2 and a $ 2. Results of derivatives

theory in the financial literature exclude path dependence

and memory, which causes the aggregation of the process

to hold less tractable properties than expected—making

the convergence to a Gaussian basin of attraction less

granted. Although the returns may be independent, abso-

lute values of these returns may not be, which causes

extreme deviations to cumulate in a manner to fatten the

tails at longer frequencies (see Sornette [23] for the attrib-

utes of the drawdowns and excursions as these are more

extreme than regular movements; deviations in the week

of the stock market crash of 1987 were more extreme, stat-

istically, than the day of the greatest move]. Naively, if you

measure the mean average deviation of returns over a

period, then lag them you will find that the measure of

deviation is sensitive to the lagging period. (Also see Ref.

[24], for a Gaussian-based test].

1.4. Fourth Problem—The Visibility of Statistical
Properties in the Data
The final problem is that operators do not observe proba-

bility distributions, only realizations of a stochastic pro-

cess, with a spate of resulting mistakes and systematic

biases in the measurement process [25, 26]. Some compli-

cated processes with infinite variance will tend to exhibit

finite variance under the conventional calibration meth-

ods, such as the Hill estimator or the log-linear regressions

[27]. In other words, for some processes, the typical error

can be tilted toward the underestimation of the thickness

of the tails. A process with an a 5 1.8 can easily yield a >

2 in observations.

An argument in favor of ‘‘thin tails,’’ or truncated power

laws, is usually made with representations of the exceed-

ant frequencies in log–log space that show the plot line

getting vertical at some point, indicating an a pulling to-

ward infinity. The problem is that it is hard to know

whether this cutoff is genuine—and not the result of sam-

ple insufficiency. Such perceived cutoff can easily be the

result of sampling error, given that we should find fewer

data points in the far tails [28]. But in fact, assuming trun-

cation is acceptable, we do not know where the distribu-

tion is to be truncated. Relying on the past yields in-sam-

ple obvious answers, but it does not reveal the true nature

of the generator of the series. In the same vein, many

researchers suggest the lognormal ([11]; see Ref. [2(a)] for

the review), or stretched exponential [23]. On that score,

the financial economics literature presents circular argu-

ments, favoring Poisson jumps, and using the same

assumed distribution to gauge the sufficiency of the sam-

ple, without considering the limitations of the sample in

revealing tail events [29, 30].6 (Simply, rare events are less

likely to show in a finite sample; assuming homogeneous

past data, 20-year history will not reveal one-in-50-year

events.) The best answer, for a practitioner, is to plead ig-

5One candidate process is Mandelbrot’s multifractal model

in which the tail exponent conserves under convolution.

Daily returns can have a a 5 3, so will monthly returns.

6In addition, these tests are quite inadequate outside of L2,

because they repose on measurement and forecast of var-

iance.

4 C O M P L E X I T Y Q 2008 Wiley Periodicals, Inc.
DOI 10.1002/cplx
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norance: so long as we do not know where the truncation

starts, it is safer to stick to the assumption of power laws.

1.5. The Major Consequence of These Four Problems
The cumulation of these four problems results in the fol-

lowing consequence: in ‘‘real life,’’ the problems incurred

when the tail exponent a < 2 effectively prevail just as

well when a > 2. The literature [5–7, 31, 32] reports ‘‘evi-

dence’’ in the equities markets, of a cubic a, i.e., a tail

exponent around 3. Their dataset of around 18 million

observations is available to most practitioners (including

this author); it is extremely easy to confirm the result in

sample. The econonophysics literature thus makes the dis-

tinction between Levy-regime and other whereas for us

practitioners, because of the time aggregation problem,

there is no such distinction. A scalable is a scalable: the

tails never become thin enough to allow the use of Gaus-

sian methods.

We will need to consider the consequences of the fol-

lowing two considerations:

1. The infinite moments never allow for derivations based

on expansions and Ito’s lemma.

2. Processes do not necessarily converge to the Gaussian

basin, making conventional tools like standard devia-

tions inapplicable.

3. Parameter discovery is not as obvious as in the Gaus-

sian world.

The main option pricing and hedging consequences of

scalability do not arise from the finiteness of the variance

but rather from the lack of convergence of higher

moments. Infinite kurtosis, which is what empirical data

seems to point to in almost every market examined, has

the same effect. There are no tangible, or qualitative differ-

ences in practice between such earlier models such as

Mandelbrot [1], on one hand and later expositions show-

ing finite variance models with a ‘‘cubic’’ tail exponent. Fit-

ting these known processes induces the cost of severe mis-

tracking of empirical reality.

The rest of this article will focus on the application of

the above four problems and its consequence to deriva-

tives pricing. We will first present dynamic hedging that

is at the center of modern finance’s version of deriva-

tives pricing, and its difficulty outside of the Gaussian

case owing to incompressible tracking errors. We then

show how variance does not appear relevant for an

option operator and that distributions with infinite var-

iance are not particularly bothersome outside of

dynamic hedging. Then we examine methods of pricing

followed with the common difficulties in working with

non-Gaussian distributions with financial products. We

examine how these results can be extended to portfolio

theory.

2. THE APPLICATIONS

2.1. Finite Variance Is Insufficient for Portfolio Theory
First, let us consider portfolio theory. There appears to be

an accepted truism (after Markowitz [33]), that mean-var-

iance portfolio allocation requires, but can be satisfied

with, only the first two moments of the distribution -and

that fatness of tails do not invalidate the arguments pre-

sented. I leave aside the requirement for a certain utility

structure (a quadratic function) to make the theory work,

and assume it to be acceptable in practice.7

Where x is the payoff (or wealth), and U the utility

function:

UðXÞ ¼ ax & bx2; a; b > 0;

By taking expectations, the utility of x

E½UðxÞ( ¼ aE½x( & bE½x2(

So seemingly higher moments do not matter. Such reason-

ing may work in the Platonic world of models, but, when

turned into an application, even without relaxing any of

the assumptions, it reveals a severe defect: where do we

get the parameters from? E[x2], even if finite, is not

observable. A distribution with infinite higher moments

E[xn] (with n > 2) will not reveal its properties in finite

sample. Simply, if E[x4] is infinite, E[x2] will not show itself

easily. The expected utility will remain stochastic, i.e.,

unknown. Much of the problems in financial theory come

from the dissipation upon application of one of the central

hypotheses: that the operator knows the parameters of the

distribution (an application of what Taleb [26] calls the

‘‘ludic fallacy’’).

The idea of mean-variance portfolio theory then has no

possible practical justification.

2.2. Difficulties with Financial Theory’s
Approach to Option Pricing

2.2.1 Technë-Epistemë

The idea that operators need theory, rather than the other

way around, has been contradicted by historical evidence

[35]. They showed how option traders managed in a quite

sophisticated manner to deal with option pricing and

hedging—there is a long body of literature, from 1902,

ignored by the economics literature presenting trading

techniques and heuristics. The literature had been shy in

considering the hypothesis that option price formation

stems from supply and demand, and that traders manage

7This is one of the arguments against the results of Mandel-

brot [1] using the ‘‘evidence’’ provided by Officer [34].

Q 2008 Wiley Periodicals, Inc. C O M P L E X I T Y 5
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to develop tricks and methods to eliminate obvious mis-

pricing called ‘‘free lunches.’’ So the result is that option

theory seems to explain (or simplify) what is being done

rather than drive price formation. Gatheral [16] defines

the profession of modelers as someone who finds equa-

tions that fit prices in the market with minimal errors,

rather than the reverse. Accordingly, the equations about

the stochastic process do not have much beyond an

instrumental use (to eliminate inconsistencies) and they

do not correspond to a representation of future states of

the world.8

2.2.2 Standard Financial Theory

Let us now examine how financial theory ‘‘values’’ finan-

cial products (using an engineering/practitioner exposi-

tion). The principal difference in paradigm between the

one presented by Bachelier [36] and the modern finance

one known as Black-Scholes-Merton [19, 37] lies in the fol-

lowing main point. Bachelier’s model is based on an

actuarial expectation of final payoffs. The same method

was later used by a series of researchers, such as Sprenkle

[38], Boness [39], Thorp and Kassouf [40], Thorp [41]).

They all encountered the following problem: how to produce

a risk parameter—a risky asset discount rate—to make it

compatible with portfolio theory? The Capital Asset Pricing

Model requires that securities command an expected rate of

return in proportion to their ‘‘riskiness.’’ In the Black-

Scholes-Merton approach, an option price is derived from

continuous-time dynamic hedging, and only in properties

obtained from continuous time dynamic hedging. We will

describe dynamic hedging in some details further down.

Thanks to such a method, an option collapses into a deter-

ministic payoff and provides returns independent of the

market; hence it does not require any risk premium.

The problem we have with the Black-Scholes-Merton

approach is that the requirements for dynamic hedging

are extremely idealized, requiring the following strict con-

ditions idealization might have gone too far, and danger-

ously so, of the style ‘‘assume the earth was square.’’ The

operator is assumed to be able to buy and sell in a fric-

tionless market, incurring no transaction costs. The proce-

dure does not allow for the price impact of the order flow,

if an operator sells a quantity of shares, it should not have

consequences on the subsequent price. The operator

knows the probability distribution, which is the Gaussian,

with fixed and constant parameters through time (all pa-

rameters do not change). Finally, the most significant

restriction: no scalable jumps. In a subsequent revision

[20(a)] allows for jumps but these are deemed to be Pois-

son arrival time, and fixed or, at the worst, Gaussian. The

framework does not allow the use of power laws both in

practice and mathematically. Let us examine the mathe-

matics behind the stream of dynamic hedges in the Black-

Scholes-Merton equation.

Assume the risk-free interest rate r 5 0 with no loss

of generality. The canonical Black-Scholes-Merton model

consists in building a dynamic portfolio by selling a call

and purchasing shares of stock that provide a hedge

against instantaneous moves in the security. Thus the

value of the portfolio p locally ‘‘hedged’’ against

exposure to the first moment of the distribution is the

following:

p ¼ &C þ
@C

@S
S

where C is the call price, and S the underlying security.

By expanding around the initial values of the underly-

ing security S, we get the changes in the portfolio in dis-

crete time. Conventional option theory applies to the

Gaussian in which all orders higher than DS2 and Dt
(including the cross product DS Dt) are neglected.

Dp ¼ @C

@t
Dt & 1

2

@2C

@S2
DS2 þOðDS3Þ

Taking expectations on both sides, we can see very strict

requirements on moment finiteness: all moments need to

converge for us to be comfortable with this framework. If

we include another term, DS3, it may be of significance in

a probability distribution with significant cubic or quartic

terms. Indeed, although the nth derivative with respect to

S can decline very sharply, for options that have a strike K

away from the initial price S, it remains that the moments

are rising disproportionately fast, enough to cause poten-

tial trouble.

So here we mean all moments need to be finite and

losing in impact, no approximation would do. Note here

that the jump diffusion model [20(a)] does not cause

much trouble for researchers since it has all the moments,

which explains its adoption in spite of the inability to fit

jumps in a way that tracks them out-of-sample. And the

annoyance is that a power law will have every moment

higher than a infinite, causing the equation of the Black-

Scholes-Merton portfolio to fail.

As we said, the logic of the Black-Scholes-Merton so-

called solution is that the portfolio collapses into a deter-

ministic payoff. But let us see how quickly or effectively

this works in practice.

8In the same vein, we repeat that the use of power-laws

does not necessarily correspond to the belief that the distri-

bution is truly parametrized as a power law, rather selected

owing to the absence of knowledge of the properties in the

tails.
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2.2.3. The actual replication process

According to standard financial economics [20(b)], the

payoff of a call is expected to be replicated in practice

with the following stream of dynamic hedges. The proce-

dure is as follows (again, assuming 0 interest rates): Take

C, the initial call price; St, the underlying security at initial

period t; and T, the final expiration of the option. The per-

formance will have three components: (1) C the initial call

value as cash earned by the option seller, (2) Max (ST 2

K,0), the final call value (intrinsic value) that the option

seller needs to disburse, and (3) the stream of dynamic

hedges aiming at offsetting the pair C 2 Max (ST 2 K,0),

in quantities of the underlying held in inventory, revised at

different periods.

So we are concerned with the evolution between the

two periods t and T and the stream of dynamic hedges.

Break up the period (T 2 t) into n increments Dt. The op-

erator changes the hedge ratio, i.e., the quantities of the

underlying security he is supposed to have in inventory, as

of time t 1 (i 2 1)Dt, then gets the difference between the

prices of S at periods t 1 (i 2 1) Dt and t 1 iDt (called

nonanticipating difference). Where P is the final profit/

loss:

P ¼ &C þ ðK & ST Þ þ
X n¼T&t

Dt

t¼1

@C

@S

"""
S¼Stþðt&1ÞDt ;t¼1þði&1ÞDt

3ðStþiDt & Stþðt&1ÞDtÞ

Standard option theory considers that the final package P

of the three components will become deterministic at the

limit of Dt ? 0, as the stream of dynamic hedges reduces

the portfolio variations to match the option. This seems

mathematically and operationally impossible.9

2.2.4. Failure: How Hedging Errors
Can be Prohibitive

As a consequence of the mathematical property seen

above, hedging errors in an cubic a appear to be indistin-

guishable from those from an infinite variance process.

Furthermore, such error has a disproportionately large

effect on strikes, as we illustrate in Figures F2-F42–4. Figure 2

illustrate the portfolio variations under a finite variance

power law distribution, subjected to the same regime of

revision (Dt 5 1 business day, 1/252), compared with the

Gaussian in Figure 3. Finally, Figure 4 shows the real mar-

ket (including the crash of 1987).

In short, dynamic hedging in a power law world does

not remove risk.

FIGURE 2

The hedging errors for an option portfolio (under a daily revision
regime) over 3000 days, under a constant volatility Student T with
tail exponent a 5 3. Technically the errors should not converge
in finite time as their distribution has infinite variance.

FIGURE 3

Hedging errors for an option portfolio (equivalent daily revision)
under an equivalent ‘‘Black-Scholes’’ world.

FIGURE 4

Portfolio Hedging errors including the stock market crash of 1987.

9See Bouchaud and Potters [42] for a critique.
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2.2.5. Options Without Variance

On the basis of this dynamic hedging problem, we look at

which conditions we need to ‘‘price’’ the option. Most

models base the option on variance. Clearly options do

not depend on variance, but on mean average deviation,

but it is expressed in terms of variance.

Consider the Bachelier expectation framework, the actua-

rial method of discounting the probabilistic payoffs of the

options. Where F is the forward, the price in the market for

the delivery of S at period T, and regardless of the probability

distribution u, under the sole restriction that the first

moment $F u(F) dF exists, the puts and calls can be priced

as follows (assuming, to simplify, 0 financing rates):

CðK Þ ¼
Z 1

K
ðF & K Þ/ðFÞdF

PðK Þ ¼
Z K

0
ðK & FÞ/ðFÞdF

where C(K) and P(K) are the call and put struck at K,

respectively. Thus when the options are exactly at-the-

money by the forward, i.e., K 5 F, each delivers half the

discounted mean absolute deviation

CðK Þ ¼ PðK Þ ¼
1

2

Z 1

0
ðDFÞ/ðFÞdK

An option’s payoff is piecewise linear as can be shown in

FigureF5 5.

In a Gaussian world, we have the mean absolute devia-

tion over standard deviation as follows:

m

r
¼ 2

p

But, with fat tails, the ratio of the dispersion measures

drops, as r reaches infinity when 1 < a < 2. This means

that a simple sample of activity in the market will not

reveal much since most of the movements become con-

centrated in a fewer and fewer number of observations.

Intuitively 67% of observations take place in the ‘‘corridor’’

between 11 and 21 standard deviations in a Gaussian

world. In the real world, we observe between 80% and

99% of observations in that range—so large deviations are

rare, yet more consequential. Note that for the conven-

tional results, we get in finance [‘‘cubic’’] a , about 90.2%

of the time is spent in the [21,11] standard deviations

corridor. Furthermore, with a 5 3, the previous ratio

becomes

m

r
¼ 2

p

2.2.6. Case of a Variance Swap

There is an exception to the earlier statement that deriva-

tives do not depend on variance. The only common finan-

cial product that depends on L2 is the ‘‘variance swap’’: a

contract between two parties agreeing to exchange the dif-

ference between an initially predetermined price and the

delivered variance of returns in a security. However, the

product is not replicable with single options.

The exact replicating portfolio is constructed [16] in

theory with an infinity of options spanning all possible

strikes, weighted by K22 , where K is the strike price.

Z 1

0

1

K 2
CðK ÞdK & DS

However, to turn this into practice in the real world

requires buying an infinite amount of options of a strike K

approaching 0, and an inifinitesimal amount of options

with strike K approaching infinity. In the real world, strikes

are discrete and there is a lower bound KL and a highest

possible one KH. So what the replication leaves leaves out,

<KL and >KH leaves us exposed to the large deviations;

and would cost an infinite amount to purchase when

options have an infinite variance.

The discrete replicating portfolio would be as follows:

by separating the options into n 1 1 strikes between KL

and KH incrementing with DK.

X n

i¼0

CðiDK þ KLÞ þ PðiDK þ KLÞ
ðKL þ iDK Þ2

Such a portfolio will be extremely exposed to mistracking

upon the occurrence of tail events.

FIGURE 5

Straddle price: options are piecewise linear, with a hump at the
strike, the variance does not enter the natural calculation.
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We conclude this section with the remark that, effec-

tively, and without the granularity of the market, the

dynamic hedging idea seriously underestimates the effec-

tiveness of hedging errors, from discontinuities and tail

episodes. As a matter of fact it plainly does not seem to

work both practically and mathematically.

The minimization of daily variance may be effectual in

smoothing performance from small moves, but it fails dur-

ing large variations. In a Gaussian basin very small proba-

bility errors do not contribute to too large a share of total

variations; in a true fat tails environment, and with nonlin-

ear portfolios, the extreme events dominate the properties.

More specifically, an occasional sharp move, such a ‘‘22

sigma event’’ (expressed in Gaussian terms, by using the

standard deviation to normalize the market variations), of

the kind that took place during the stock market crash of

1987, would cause a severe loss that would cost years to

recover. Define the ‘‘daily time decay’’ as the drop in the

value of the option over 1/252 years assuming no move-

ment in the underlying security; a crash similar to 1987

would cause a loss of close to hundreds of years of daily

time decay for a far out of the money option, and more

than a year for the average option.10

2.3. How Do We Price Options Outside of the
Black-Scholes-Merton Framework?
It is not a matter of ‘‘can.’’ We ‘‘need’’ to do so once we lift

the idealized conditions, and we need to focus on the

properties of the errors.

We just saw that scalability precludes dynamic hedging

as a means to reach a deterministic value for the portfolio.

There are of course other impediments for us, merely the

fact that in practice we cannot reach the level of comfort

owing to transaction costs, lending and borrowing restric-

tions, price impact of actions, and a well-known problem

of granularity that prevent us from going to the limit. In

fact continuous-time finance [20(b)] is an idea that got

plenty of influence in spite of both its mathematical

stretching and its practical impossibility.

If we accept that returns are power-law distributed,

then finite or infinite variance matter little. We need to use

expectations of terminal payoffs, and not dynamic hedg-

ing. The Bachelier framework, which is how option theory

started, does not require dynamic hedging. Derman and

Taleb [46] argue how one simple financing assumption,

the equality of the cost-of-carry of both puts and calls,

leads to the recovery of the Black-Scholes equation in the

Bachelier framework without any dynamic hedging and

the use of the Gaussian. Simply a European put hedged

with long underlying securities has the same payoff as the

call hedged with short underlying securities and we can

safely assume that cash flows must be discounted in an

equal manner. This is common practice in the trading

world; it might disagree with the theories of the Capital

Asset Pricing Model, but this is simply because the tenets

behind CAPM do not appear to draw much attention on

the part of practitioners, or because the bulk of tradable

derivatives are in fixed-income and currencies, products

unconcerned by CAPM. Futhermore, practitioners, are not

concerned by CAPM (see Taleb [47] and Haug [48]). We do

not believe that we are modeling a true expectation, rather

fitting an equation to work with prices. We do not ‘‘value.’’

Finally, thanks to this method, we no longer need to

assume continuous trading, absence of discontinuity, ab-

sence of price impact, and finite higher moments. In other

words, we are using a more sophisticated version of the

Bachelier equation; but it remains the Bachelier [36]

nevertheless. And, of concern here, we can use it with

power laws with or without finite variance.

2.4. What Do We Need? General Difficulties
with the Applications of Scaling Laws
This said, while a Gaussian process provides a great mea-

sure of analytical convenience, we have difficulties building

an elegant, closed-form stochastic process with scalables.

Working with conventional models presents the follow-

ing difficulties.

2.4.1. First Difficulty: Building a Stochastic Process

For pricing financial instruments, we can work with termi-

nal payoff, except for those options that are path-depend-

ent and need to take account of full-sample path.

Conventional theory prefers to concern itself with the

stochastic process dS/S 5 m dt 1 r dZ (S is the asset

price, m is the drift, t is time, and r is the standard devia-

tion) owing to its elegance, as the relative changes result

in exponential limit, leading to summation of instantane-

ous logarithmic returns, and allow the building of models

for the distribution of price with the exponentiation of the

random variable Z, over a discrete period Dt, St1Dt 5

St ea1bz. This is convenient: for the expectation of S, we

need to integrate an exponentiated variable

E½StþDt ( ¼ St

Z
eaþbz/ðzÞdz

which means that we need the density of z, in order to

avoid finite expectations for S, to present a compensating

exponential decline and allow bounding the integral. This

explains the prevalence of the Lognormal distribution in

10One can also fatten the tails of the Gaussian and get a

power law by changing the standard deviation of the Gaus-

sian: Dupire [43(a)], Derman and Kani [44], Borland [45].

See Gatheral [16] for a review.
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asset price models—it is convenient, if unrealistic. Further,

it allows working with Gaussian returns for which we have

abundant mathematical results and well known properties.

Unfortunately, we cannot consider the real world as

Gaussian, not even Log-Gaussian, as we have seen earlier.

How do we circumvent the problem? This is typically

done at the cost of some elegance. Many operators [49]

use, even with a Gaussian, the arithmetic process first

used in Bachelier [36],

StþDt ¼ aþ bz þ St

which was criticized for delivering negative asset values

(though with a minutely small probability). This process is

used for interest rate changes, as monetary policy seems

to be done by fixed cuts of 25 or 50 basis points regardless

of the level of rates (whether they are 1% or 8%).

Alternatively, we can have recourse to the geometric

process for a , large enough, Dt (say 1 day)

StþDt ¼ Stð1þ aþ bzÞ

Such a geometric process can still deliver negative prices

(a negative, extremely large value for z) but is more in line

with the testing done on financial assets, such as the

SP500 index, as we track the daily returns rt 5 (Pt 2

Pt2Dt)/Pt2Dt in place of log(Pt/Pt2Dt). The distribution can

be easily truncated to prevent negative prices (in practice

the probabilities are so small that it does not have to be

done as it would drown in the precision of the computa-

tion).

2.4.2. Second Difficulty: Dealing with
Time Dependence

We said earlier that a multifractal process conserves its

power law exponent across timescales (the tail exponent a

remains the same for the returns between periods t and

t 1 Dt, independently of Dt). We are not aware of an ele-

gant way to express the process mathematically, even

computationally, nor can we do so with any process that

does not converge to the Gaussian basin. But for practi-

tioners, theory is not necessary; traders need tricks. So the

difficulty can be remedied, in the pricing of securities by,

simply, avoiding to work with processes, and limiting our-

selves to working with distributions between two discrete

periods. Traders call that ‘‘slicing’’ [47], in which we work

with different periods, each with its own sets of parame-

ters. We avoid the complication of studying the process

between these discrete periods.

3. CONCLUDING REMARKS
This article outlined the following difficulties: working in

quantitative finance, portfolio allocation, and derivatives

trading while being suspicious of the idealizations and

assumptions of financial economics, but avoiding some of

the pitfalls of the econophysics literature that separate

models across tail exponent a 5 2, truncate data on the

occasion, and produce results that depend on the assump-

tion of time independence in their treatment of processes.

We need to find bottom-up patches that keep us going, in

place of top-down, consistent but nonrealistic tools and

ones that risk getting us in trouble when confronted with

large deviations. We do not have many theoretical

answers, nor should we expect to have them soon. Mean-

while option trading and quantitative financial practice

will continue under the regular tricks that allow practice

to survive (and theory to follow).
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Presentation of the result: 
Using the metadistribution of possible distributions for a given measure, we define a 
condition under which it is possible to make a decision based on the observation of random 
variable, which we call "statistical decidability". We provide a sufficient condition on the 
metadistribution for the decision to be "statistically decidable" and conjecture that decisions 
based on a metadistribution with non compact support are always "statistically undecidable". 
There is  the need for a strong undefeasable a priori without which decisions are not 
statistically justified — an effect that is very significant for decisions affected by small 
probabilities. 
 
Decisions are not made on naive measure of True/False in simple cumulative probability 
space, but on a higher moments (say, expectation or some similar decision measure such as 
utility) —off some numerical decidability criterion. Unlike the Gödel result, which has not  
yet shown practical significance, the added dimension of consequence or utility of decision 
makes enormous consequences, making situations completely undecidable statistically. 
 
Bayesian updating methods do not bring any remedy as they are much more prior-dependent 
than is thought naively by preselecting prior data and a priori (nonrevisable) distribution (i.e, 
without metadistribution). Maximum likelihood estimations are even worse as, by inverting 
the question of the distribution of the objective criterion and that of the sample conditionally 
to a choice of distribution, they provide absolutely no control on the objective criterion. In 
both cases, two observers can observe the same series, without ever converging. 
 

Introduction 
 Let Ω be the space of possible eventualities (the “random space”) and µ be the (unknown) 
probability distribution on it. We need to take an “informed” decision, based on a criterion 
Φ(µ) that depends on µ. Therefore Φ is a function defined on ℘(Ω) with values in a set V 
depending on the nature of the decision. For example: 
 

• Yes/No decision:  Φ : ℘(Ω) → V = {0,1} 
• Quantitative decision:  Φ : ℘(Ω) → V = R or Rd 

 
The decision will be taken with respect to the estimated distribution of Φ(µ) knowing all or 
some of the available information. 
Let us assume that Φ is continuous with respect to some norm ||.||℘(Ω) on ℘(Ω). We shall 
assume that µ is drawn from an a priori distribution π on the σ-algebra spanned by this norm. 



Let πΦ = Φ*π be the image measure in V, that is, the distribution of ϕ = Φ(µ) according to the 
distribution π. The decision will in fact not be taken with respect to Φ(µ), which is unknown, 
but with respect to a criterion Ψ(πΦ) ∈ V, where the function Ψ : ℘(V) → V is assumed to be 
continuous with respect to a norm ||.||℘(V) and such that, for a Dirac mass δa on a ∈ V, one has 
Ψ(δa) = a (in other words, Ψ coincides with Φ when µ is perfectly known). 
Let us now assume that the information is given by a sample of values of random variables 
Xi(ω), i ∈ {1,…,n}, ω ∈ Ω, drawn at random from the probability distribution µ. Our decision 
question can be restated as: 
 

• What is the distribution of Φ(µ) knowing (X1,…,Xn) ?   (Q1) 
 
Let us consider the compound random variables (ξ1,…,ξn) defined by picking µ at random 
with respect to π, then ω at random with respect to µ and compute Xi(ω). Our question Q1 can 
now be restated in questions Q2 and Q3 as follows: 
 

• What is the joint distribution of (ϕ, ξ1,…, ξn) in V × Rnd ?   (Q2) 
• What is the conditional distribution of ϕ in V knowing (ξ1,…,ξn) ?  (Q3) 

 
We can see Q3 as a function gπ : Rnd → ℘(V), then the decision criterion is the function 
ψ = Ψ ○ gπ. For this criterion to be usable, it must be well defined, continuous with respect to 
input values of (ξ1,…,ξn) – hence g must be continuous when the image space ℘(V) is 
equipped with the norm ||.||℘(V) – and converge to the criterion ϕ when n tends to +∞. 
Now comes the general question that π itself is generally unknown. At best, we assume that µ 
is picked within a certain class C ⊂ ℘(Ω). 

Definition 
A decision based on criteria Φ and Ψ and distribution π is statistically decidable if the 
following holds: 

1. For any fixed n, the function ψ : Rnd → V is well defined. If it is given as an integral 
with respect to π, then the integrand must be π-integrable. 

2. For any fixed n, the function ψ : Rnd → V is continuous with respect to the sample 
(ξ1,…,ξn) 

3. Let us assume that (X1,…,Xn) are drawn from a given measure µ and let us consider 
the sample error ε(X1,…,Xn) = |ψ(X1,…,Xn) – Φ(µ)| and its expectation 
Err(µ) = Eµ[ε(X1,…,Xn)]. Then Err(µ) must tend to 0 when n tends to +∞ both π-
almost surely and in L1(π). 

 
Otherwise it is said statistically undecidable. The latter condition is probably the most 
important of all: it means that no uncertainty on the distribution is left aside when the sample 
is large enough, so that the decision criterion corresponds to that originally fixed by the 
problem. 
When π is unknown within a class Γ ⊂ ℘(℘(Rd)), then for the decision to be statistically 
decidable, functions ψ = Ψ ○ gπ must be equi-continuous and the convergence of errors to 0 
must be uniform in the class Γ. 



Bayesian Statistics 
Bayesian statistics are based on a prior distribution µ0 then, given a sample X, the probability 
is modified to a posterior distribution µ1 that depends on the prior probability of the sample: 

  

Explain why the knowledge of Φ(µ1) doesn’t give any info the distribution of Φ(µ) knowing X. 

Maximum Likelihood 

Given a sample X = (X1,…,Xn), one defines the likelihood of a distribution  

where fµ is the pdf of µ. Then assuming µ = µα depends on a parameter α � Rd with d < n, 
one selects the parameter amax that maximizes the likelihood L(µαmax). 
Explain why the knowledge of Φ(µαmax) doesn’t give any info the distribution of Φ(µ) knowing 
X. 

Fourier Transform 
Let us consider question (Q3). By definition of conditional distributions, for any test functions 
h(µ) and ui(ξi), i = 1…n, one has: 
  

Assume that  and set ψ(ξ) = Ψ ○ gπ(ξ). One has: 

 ∫ψ(x)u1(x1)…un(xn)dx1…dxn = ∫U(Φ(µ))u1(X1)…un(Xn)dµ(X1)…dµ(Xn)dπ(µ) 
     = ∫U(Eµ(f))Eµ(u1)…Eµ(un)dπ(µ) 
Where Φ(µ) = ∫fdµ. 
Using functions u(x) = exp(itx), we get the Fourier transform of ψ : 

  

 
We can therefore deduce the following: 
 
Theorem 
The function ψ is continuous – hence the statistical problem is decidable – if: 

  

Conversely, if ψ is continuous – i.e. if the problem is decidable – then: 

 

Would this condition not be satisfied, then the problem would be undecidable. 

Conjectures 
Here is a list of conjectures that express “generic statistical undecidability”: 
 



1. If, for any criterion Ψ of the form , the problem is 

statistically decidable, then the metadistribution π has compact support in ℘(Ω). This 
result would show that for a problem to be statistically decidable, one needs either to 
make assumptions on the growth of the criterion at infinity, or strong a priori 
assumptions, such as a finitely parameterized class, on the acceptable measures. 

2. Whatever the norm on ℘(℘(Ω)), the map π → Ψ ○ g is generically discontinuous. 
This means that very minor changes in the a priori distribution π lead to completely 
different decision criteria. 

3. If the class C of possible π is not compact (a set with non empty interior in ℘(℘(Ω)) 
is not compact, whatever the norm), then the set of corresponding criteria is 
generically not uniformly continuous. This means that even when assuming that π is 
close to a given a priori probability measure π0, one cannot control the sensitivity of 
the decision to inputs. 

4. The more Φ depends on areas where µ has low probability, the less Ψ ○ g is 
continuous, i.e. very close input samples can lead to very different decisions. This 
assertion, which needs a precise definition of “depending on where µ has low 
probability”, exactly express the fact that small probabilities are harder to estimate 
than large ones. More precisely, let us assume that the norm ||.||℘(Ω) is the dual of the 
standard max norm on L∞(Ω). Then the modulus of continuity of Ψ ○ g is generically 
no better than that of Φ. 

 



Notes: Platonic Convergence and the Central Limit 
Theorem
1) An erroneous notion of limit:

Take the standard formulation of the Central Limit Theorem (Feller 1971, Vol. II;Grimmet & Stirzaker, 1982):

Let X1 ,X2 ,... be a sequence of independent identically distributed random variables with mean m  & variance s2 satisfying 
m< ¶ and  0 <s2<¶, then

⁄i=1
N Xi - N m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!N Ø

D
Gaussian H0, 1L as N Ø ¶

Where ØD  is converges "in distribution".

Taking convergence for granted provides a plain illustration of the severe disease of Platonicity --or working backwards 
from theory to practice. Effectively we are dealing with a double problem. 

1) The first, as uncovered by Jaynes, comes from to the abuses of formalism & measure theory: 

‡ Jaynes 2003 (p.44):"The danger is that the present measure theory notation presupposes the infinite limit already 
accomplished, but contains no symbol indicating which limiting process was used (...) Any attempt to go directly to the 
limit can result in nonsense".

Granted Jaynes is still too Platonic in general and idealizes his convergence process (he also falls headlong for the 
Gaussian by mixing thermodynamics and information). But we accord with him on this point --along with the definition 
of probability as information incompleteness, about which in later sessions.

2) The second problem is that we do not have a "clean" limiting process --the process cannot be idealized.  It is very rare to 
find permanent idealized conditions that allow for temporal aggregation.

Now how should we look at the Central Limit Theorem? Let us see how we arrive to it assuming "independence".

2) The Problem of Convergence

The CLT works in a specific way:It does not fill-in uniformily,but in a near-Gaussian way--indeed,disturbingly so. 
Simply,whatever your distribution (assuming one mode),your sample is going to be skewed to deliver more central 
observations,and fewer tail events.The consequence is that,under aggregation,the sum of these variables will converge 
"much" faster in the body of the distribution than in the tails. As N,the number of observations increases,the Gaussian zone 
should cover more grounds... but not in the "tails".

You can see it very easily with two very broad uniform distributions,say with a lower bound a and an upper bound b, b-a 
very large. As you convolute, you will see the peakedness in the center, which means that more observations will fall there 
(see Appendix).

This quick note shows the intuition of the convergence and presents the difference between distributions. (See Appendix)

Take the sum of of random independent variables Xi  with finite variance under distribution j(X). Assume 0 mean for 
simplicity (and symmetry, absence of skewness to simplify).

A better formulation of the Central Limit Theorem (Kolmogorov et al,x)



This quick note shows the intuition of the convergence and presents the difference between distributions. (See Appendix)

Take the sum of of random independent variables Xi  with finite variance under distribution j(X). Assume 0 mean for 
simplicity (and symmetry, absence of skewness to simplify).

A better formulation of the Central Limit Theorem (Kolmogorov et al,x)

P
Ä
Ç
ÅÅÅÅÅÅÅÅ-u § Z =

⁄i=0
n Xi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!n s
§ u

É
Ö
ÑÑÑÑÑÑÑÑ =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

 ‡
-u

u

e- Z2ÅÅÅÅÅÅ2  „Z

So the distribution is going to be:

i
k
jjj1 - ‡

-u

u

e- Z2ÅÅÅÅÅÅ2  „Zy{
zzz for - u § z § u

inside the "tunnel" [-u,u] --the odds of falling inside the tunnel itself 

and

‡
-¶

u

j'@nD HZL „z + ‡
u

¶

j'@nD HZL „z

outside the tunnel [-u,u]

Where j'[n] is the n-summed distribution of j.

How j'[n] behaves is a bit interesting here --it is distribution dependent. And it depends on the initial distribution!

Bouchaud-Potters Treatment of Width of the Tunnel [-u,u]

(in class derivation)

‡ 3) Using Log Cumulants & Observing Gaussian Convergence

The normalized cumulant of order n,  C(n) is the derivative of the log of the characteristic function f which we convolute N 
times divided by the second cumulant (i,e., second moment).

CHn, NL =
H-ÂLn ∂n logHfN L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H-∂2 logHfLN Ln-1 ê. z Ø 0

Since C(N+M)=C(N)+C(M), the additivity of the Log Characteristic function under convolution makes it easy to see the 
speed of the convergence to the Gaussian.

Fat tails implies that higher moments implode --not just the 4th .

Table of Normalized Cumulants -Speed of Convergence  (Dividing by snwhere n is the order of the cumulant).
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Distribution Normal@m, sD PoissonHlL ExponentialHlL GHa, bL
PDF ‰- Hx-mL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s
‰-l lx
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx! ‰-x l l b-a ‰-

x
ÅÅÅÅÅb xa-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅGHaL

N-convoluted
Log Char 
acteristic

N logI‰Â z m- z2 s2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 M N logH‰H-1+‰Â z L l L N logH lÅÅÅÅÅÅÅÅÅÅÅÅl-Â z L N

logHH1 - Â b zL-a L

2nd Cum 1 1 1 1
3 rd 0 1ÅÅÅÅÅÅÅÅÅN l

2 lÅÅÅÅÅÅÅÅN
2ÅÅÅÅÅÅÅÅÅÅÅÅÅa b N

4 th 0 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅN2 l2
3! l2
ÅÅÅÅÅÅÅÅÅÅÅÅN2

3!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa2 b2 N2

5 th 0 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅN3 l3
4! l3
ÅÅÅÅÅÅÅÅÅÅÅÅÅN3

4!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa3 b3 N3

6 th 0 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅN4 l4
5! l4
ÅÅÅÅÅÅÅÅÅÅÅÅN4

5!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa4 b4 N4

7 th 0 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅN5 l5
6! l5
ÅÅÅÅÅÅÅÅÅÅÅÅÅN5

6!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa5 b5 N5

8 th 0 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅN6 l6
7! l6
ÅÅÅÅÅÅÅÅÅÅÅÅN6

7!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa6 b6 N6

9 th 0 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅN7 l7
8! l7
ÅÅÅÅÅÅÅÅÅÅÅÅN7

8!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa7 b7 N7

10 th 0 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅN8 l8
9! l8
ÅÅÅÅÅÅÅÅÅÅÅÅN8

9!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa8 b8 N8

Distribution Mixed
Gaussians
HStoch VolL

StudentTH3L StudentTH
4L

Ñ

PDF p ‰
-

x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s1 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s1
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ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2 2
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p Hx2 +3L2 12 H 1ÅÅÅÅÅÅÅÅÅÅÅÅÅx2 +4 L
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 N - convoluted
Log Characteristic

N logIp ‰- z2 s1
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 +

H1 - pL ‰- z2 s2
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 M
N
IlogIè!!!3 †z§ + 1M -
è!!!3 †z§M

N logH
2 †z§2 K2 H2 †z§LL

Ñ

2nd Cum 1 1 1 Ñ
3 rd 0 Ind Ñ Ñ

4 th -I3 H-1 + pL
p Hs1

2 - s2
2 L2 M ë

IN2 Hp s1
2 -

H-1 + pL s2
2 L3 M

Ind Ind Ñ

5 th 0 Ind Ind Ñ

6 th I15 H-1 + pL
p H-1 + 2 pL
Hs1

2 - s2
2 L3 M ë

IN4 Hp s1
2 -

H-1 + pL s2
2 L5 M

Ind Ind Ñ

3



Note: On "Infinite Kurtosis"- Discussion

Note on Chebyshev's Inequality and upper bound on deviations under finite variance

A lot of idiots talk about finite variance not considering that it still does not mean much. Consider Chebyshev's inequality:

P@X > aD §
s2
ÅÅÅÅÅÅÅ
a2

P@X > n s D §
1

ÅÅÅÅÅÅÅ
n2

Which effectively accommodate power laws but puts a bound on the probability distribution of large deviations --but still 
significant. 

The Effect of Finiteness of Variance

This table shows the probability of exceeding a certain s for the Gaussian and the lower on probability limit for any distribu-
tion with finite variance.

Deviation
3

Gaussian
7. µ102

Chebyshev Upper Bound
9

4 3. µ104 16

5 3. µ106 25

6 1. µ109 36

7 8. µ1011 49

8 2. µ1015 64

9 9. µ1018 81

10 1. µ1023 100

‡ Calculations

‡ Calculations
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‡ APPENDIX to 2- How We Converge Mostly in the Center - A Tutorial
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Example: Uniform Distribution

f HxL = ¥ 1 0 § x § 1

By Convoluting 2, 3, 4 times iteratively:

f2 Hz2L = ‡
-¶

¶

H f Hz - xLL H f xL „ x = µ 2 - z2 1 < z2 < 2
z2 0 < z2 § 1

f3 z3 = ‡
0

3
Hf2 Hz3 - x2LL H f x2L „ x2 =

Ø

±



z32
ÅÅÅÅÅÅÅÅÅ2 0 < z3 § 1

-Hz3 - 3L z3 - 3ÅÅÅÅ2 1 < z3 < 2

- 1ÅÅÅÅ2 Hz3 - 3L Hz3 - 1L z3  2
1ÅÅÅÅ2 Hz3 - 3L2 2 < z3 < 3

f4 x = ‡
0

4
Hf3 Hz4 - xLL H f x3L „ x3 =

Ø

±



1ÅÅÅÅ4 z4  3
1ÅÅÅÅ2 z4  2
z42
ÅÅÅÅÅÅÅÅÅ4 0 < z4 § 1
1ÅÅÅÅ4 H-z42 + 4 z4 - 2L 1 < z4 < 2 fi 2 < z4 < 3
1ÅÅÅÅ4 Hz4 - 4L2 3 < z4 < 4

 

 

 A simple Uniform Distribution
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We can see how quickly, after one single addition, the net probabilistic "weight" is going to be skewed to the center of the 
distribution, and the vector will weight future densities..
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Benoit Mandelbrot and Nassim Nicholas Taleb

LARGE BUT FINITE SAMPLES AND PREASYMPTOTICS

 

Ever since 1963, when power law densities first entered finance through the Pareto-Lévy-
Mandelbrot model, the practical limitations of the limit theorems of probability theory have raised
important issues. Let the tail follow the power-law distribution defined as follows: P>x= K x–a where
P>x is the probability of exceeding a variable x and a is the asymptotic power law exponent for x large
enough. If so, a first partial result is that the largest of n such variables is given by an expression
(“Fréchet law”)that does not depend on a. This maximum is well-known to behave like n1/a. A second
partial result is that the sum of n variables is given by an expression that — to the contrary — does
depend on the sign of a–2.

If a > 2, the variance is finite — as one used to assume without thinking. But what does the
central limit theorem really tell us? Assuming EX=0, it includes the following classical result: EX infinite
and there exists near EX a central bell region in which the sum is increasingly close to a Gaussian
whose standard deviation behaves asymptotically like n1/2. Subtracting nEX from the sum and
combining the two partial results, one finds that the relative contribution of the largest addend behaves
like n1/a–½. In the example of a=3, this becomes n–1/6. Again asymptotically for n®¥, this ratio tends
to 0 — as expected — but the convergence is exquisitely slow. For comparison, examine for EX≠0 the
analogous very familiar ratio of the deviation from the mean — to the sum if the former behaves like
the standard deviation times n1/2. The latter — assuming EX≠0 — behaves like nEX. Therefore these
two factors’ ratio behaves like n–1/2. To divide it by 10, one must multiply n by 100, which is often
regarded as uncomfortably large. Now back to n–1/6: to divide it by 10, one must multiply n by
1,000,000. In empirical studies, this factor is hardly ever worth thinking about.

Now consider the — widely feared — case a<2 for which the variance is infinite. The maximum’s
behavior is still n1/a, but the — subtracting nEX —sum’s behavior changes from n1/2 to the
“anomalous”n1/a. Therefore, the relative contribution of the largest addend is of the order n1/a–1/a=n0.
Adding all the bells and whistles, one finds that the largest addend remains a significant proportion of
the sum, even as n tends to infinity.

Conclusion: In the asymptotic regime tackled by the theory, n0 altogether differs from n–1/6, but in
the preasymptotic regime within which one works in practice — especially after sampling fluctuations
are considered — those two expressions are hard to tell apart. In other words, the sharp discontinuity
at a=2, which has created so much anguish in finance — is replaced in practice by a very gradual
transition. Asymptotically, the Lévy stability of the Pareto-Lévy-Mandelbrot model remains restricted to
a<2 but preasymptotically it continues to hold if a is not far above 2.

 





Lecture:The fundamental problem of the 0th moment and 
the irrelevance of "naked probability"

The Nonbinary problem: Decisions (by humans) are rarely made based on probability except in the case of strictly binary 
bets: those on win/lose, in which the agent is focused on the outcome of naked probability Ÿ

D
p HxL „x rather than 

Ÿ
D
f HxL p HxL „x where f(x) is a function of the random variable and D the area of integration. So for the expectation, i.e. 

"impact", most common criterion of concern, f(x)= x.  

The agent might discuss the "probable" and "improbable" but not know that he does not really mean it. It is just a proxy for 
something else -"consequential" or "inconsequential".

Note:We will see (section x) that we do not care about some part of the 0th  moment (probability), burt some part of the first 
moment, and just that --or some complicated function of it, causing the dependence on the 1  norm. We have no reasons 
(except computational) to worry about   2or higher ones (higher moments). Anyway, we will be using  f  for the expectation 
of scaling of the outcomes.  f(x) =|x| (mean deviation) or f(x)=x2  for the variance, etc., for higher moments, One can even 
include some "utility" function as part of f, whatever that means --it is not necessary as it can be embedded in p(x).

One aspect of this irrelevance of probability is that "fatter tails" does not necessarily mean a higher incidence (i.e. 
frequency) of rare events; it means a higher contribution of these events which generally corresponds to a lower 
incidence of some tail events (and a rise of others further out in the distribution). Given the same scaling, a higher 
fourth moment "fatter tails" decreases the probability of exceeding K, i.e., Ÿ

K

¶
f HxL „x while increasing the 

contribution Ÿ
K

¶
x f HxL „x

Example: Naive Fattening of the Gaussian

Create a naive fat-tailed Gaussian. We pick a dual Gaussian mixture, both mixes equiprobable ( 1ÅÅÅ2 )  with a "low" variance  
Hs H1 - vLL2  and a "high" one Is è!!!!!!!!!!!!!!!!!!!!!!!!!!!

-v2 + 2 v + 1 M2  selecting a single v so that the total variance remains the same. With 1 >v≥
0, the total standard deviation

s = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1
ÅÅÅÅÅ
2
JHs H1 - vLL2 + Is è!!!!!!!!!!!!!!!!!!!!!!!!!!!

-v2 + 2 v + 1 M2 N

v=0, v= 1/2 fattens the tails up to 1 standard deviation



Illustration: Time spent in the "tunnel" between -1 and 1 "sigmas" for the deterministic and mild 
Gaussian mixture

We can see that as v increases (therefore volatility is more stochastic), the time spend betwen +1 and -1 standard deviations 
increases. So events , like P>1s  , with 16% probability have actually 12% of occuring. 

v Time ± 1 std
1 0 0.682689
2 0.1 0.687089
3 0.2 0.698764
4 0.3 0.715553
5 0.4 0.73477
6 0.5 0.752404
7 0.6 0.763293

Beyond  some "sigma" the effect reverses -- here rather quickly: 3 standard deviations. So fatter tails imply fewer 1 sigma 
events, and more 3 sigma ones. Simply, we are not dealing with very fat tails as these do not fill out too far outside the 
central region.

v Time ± 3 MAD
1 0 0.983319
2 0.1 0.98198
3 0.2 0.978556
4 0.3 0.973975
5 0.4 0.969164
6 0.5 0.964807
7 0.6 0.961187

Stopping Time &  Fattening of the tails of a Brownian Motion

Consider the distribution of the time it takes for a continuously monitored Brownian motion S to exit from a "tunnel" with a 
lower bound L and an upper bound H. Counterintuitively, fatter tails makes an exit (at some sigma) take longer. You are 
likely to spend more time inside the tunnel --since exits are far more dramatic.

y is the distribution of exit time t, where t ª inf {t: S – [L,H]}

From Taleb (1997) we have the following approximation

yH t » sL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHlogHHL - logHLLL2  

i

k

jjjjjjjjj‰- 1ÅÅÅÅÅ8 Ht s2 L p s2 „
n=1

m H-1Ln ‰- n2 p2 t s2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 HlogHH L-logHLLL2 nè!!!S Iè!!!!L sinI n p HlogHLL-logHSLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅlogHH L-logHLL M -

è!!!!!H sinI n p HlogHH L-logHSLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅlogHH L-logHLL MM
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!H è!!!!L

y

{

zzzzzzzzz

and the fatter-tailed distribution from mixing Brownians with s2  separared by a coefficient v:

yHt » s, vL =
1
ÅÅÅÅÅ
2

 pH t » s H1 - vLL +
1
ÅÅÅÅÅ
2

pIt … s
è!!!!!!!!!!!!!!!!!!!!!!!!!!!

-v2 + 2 v + 1 M

Stochastic paths terminating upon hitting barriers H (high) H=120  and L (low) L=80.  Time to exit is extended by the 
fattening of the tails.
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The Implication: Visibly it "takes longer" to capture the statistical properties. How much "longer"? I don't know --it is, as 
we saw earlier, an inverse problem.
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Derivatives, Prediction and True Fat 
Tails (i.e. Fractal), Part 1: The 
Fragility of Option Pricing

Nassim Nicholas Taleb
This is a working notebook --it cannot be quoted in this present version.

Derivatives that depends on the high consequential large deviation are marred with huge sampling 
error. I examine the sensitivity of the derivatives to the parameters, the sampling error of the estima-
tions or "predictions", then look at the empirical stability of these parameters.
Organization: First 1) I do the math of distribution & derivatives, as there is no intelligent literature 
on the subject outside of the inapplicable Levy-Stable, 2) I show the magnitudes errors w.r. to some 
parameters (mainly the tail exponent a) 3) I discuss the error in the estimation of these parameters.
Main point: For options on remote events, a small change in the tail exponent say a betwen 1.5 and 
2, well within the estimation errors, make the option change in value: a .5 change in exponent makes 
the error on the event vary by a factor >10, often >100. Moral: don't play with tail estimations, and 
don't believe that options can estimate anything.

. 

1- True Fat Tails and Derivatives Pricing
Definition: true fat tails (see lecture x) are as follows P>nX /P>X  depends on n, not X for X large enough.

First, we select a distribution without a tail-characteristic scale for x on the real line -¶ and ¶, which consists in a
fractal tails with exponent a and a multiplying scale. Typical Student T

f HuL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!
a b H aÅÅÅ2 ,

1ÅÅÅ2 L  I a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a + u2

M
1+aÅÅÅÅÅÅÅÅ2

, u œ @-¶, ¶D, a ¥ 1

So for large u "in the tails", we can see that it behaves K u-a-1 , where K is a constant.

Where b H.L is Euler beta function b Ha, bL =
GHaL GHbL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

GHa + bL = ‡
0

1

 ta-1  H1 - tLb-1  d  t.

f(.) has fractal tails with exponent a on both sides. 
Note: I ignore the designation  "Levy-stable"

a= 5/2; Comparison with a Gaussian N(0,è!!!!!!!!!!5 ê2 )
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Now consider the multiplicative (monoperiodic) process X= X0  (1+s u -c),  where u is f distributed.  X-X0-cX0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅX0
1ÅÅÅs

is  a  straight  relative  price  change  with  a "drift"  term c  and  a  "dispersion"  constant  s  to scale  by  the "volatility",
simplified as a multiple of mean deviation (for a given period between an initial 0 and T.) The problem is that we
cannot take a fractal tailed distribution for Log[ XÅÅÅÅÅX0

] for obvious reasons (too unwieldy; I tried), so we have to be
content with relative price changes. 

By change of stochastic variables, I am able to get the distribution of X, conditional on X 0 .

(If x has distribution f then  y=z(x) has density f HgHxLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅf ' HgHxLL where g is the inverse function of z).

f HXL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!a s X0 bH aÅÅÅÅÅ2 , 1ÅÅÅÅ2 L
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a+1ÅÅÅÅÅÅÅÅÅÅÅÅ2

, X > 0

Caveat 1 and Renormalization: The distribution f(X) may have minutely small mass for X<0, when (1+s u) turns
negative,  s  u<  1.  This  requires  an  atrocially  huge  volatility  and  can  be  compensated  by  a  truncating  effect  and
renormalization of the mass with f'[x]= f(x) 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1-Ÿ
-¶

0
f HXL „X

. I left it out as it does not affect the exercise. 

Indeed 

‡
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0
f HXL
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2

-
1
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2è!!!!!!!!!!!!!!!!1 + 2 s2
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f HXL » a=3  „ X H6 s2 + 2L sin-1
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3 p s2 + p

Which is very small: of the order of < .01% for high volatility environments when a=3, and .05% when a=2 --thus
justifying ignoring the renormalization.

Caveat 2 and Explosive Mean: Likewise the mean may become explosive upwards, in which case the compensa-
tion can be part of the drift c just like the lognormal is compensated by a negative -1ÅÅÅÅÅ2  s2 (where s is the Gaussian
standard deviation. But,for the purposes of the exercise f(.) works well in addressing option errors. 
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I  was  not  able  to  find  a  close  solution  except  for  a=2,3.  At  a=¶  we  get  the  standard  Bachelier-Thorp  (a.k.a.
Black-Scholes) equation.

Note on moments: With no drift c,

Whith  finite variance a=3

a = 3,

E@XD = X0  
i
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2 
è!!!3  s + 2 cot-1Iè!!!3  sM + p
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where cot-1  HzL is the Arc Cotangent of z

EAJ X - X0
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With  infinite variance (borderline) a=2
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‡ Call Options Under Different Parametrizations

a- Call Option Price C with a Cubic a 

Call Price C = ‡
K

¶

HX - KL f HXL „ X
ƒƒƒƒƒƒƒƒƒ a = 3

C3 =
s X0 Jp "#############1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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I apologize for the inelegance but I can't do better

b- Call Option Price with  a= 5/2 
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where 2  F1 Ha, b; c; zL = ‚
k=0

¶

HaLk  HbLk ê HcLk  zk ê k !.

c- Call Option Price with  square a
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C2 =
1
ÅÅÅÅÅ
2
Hz3 K2 + H-2 HC + 1LX0 z3 - 1L K + X0 HC + HHC + 1L2 + 2 s2 L X0 z3 + 1LL

where

z3 = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
K2 - 2 H1 + CL K X0 + HH1 + CL2 + 2 s2 LX02

‡ Comparison to the Volatility Smile (Bachelier-Thorp, a.k.a. Black Scholes)

The Infinite Variance Case: aÇ2 does not mean anything for option pricing, it generates a volatility surface --so
long as the scaling s is calibrated on the absolute first moment. 
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2- True Fat Tails and Derivatives Errors
By  changing  a  and  maintaining  the  rest  constant,  we  can  do  guess  the  consequence  of  a  small  error  in  the  tail
exponent on the option value.
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Note that almost all options converge to the same price (minus moniness) when alpha drops to close to 1.

Errors in Alpha Estimation
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n= 40,431

The Mean Deviation= .42  for an estimated alpha of 2.62 (using the Hill Estimator). 
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Decision making and planning under low levels of predictability
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Abstract

This special issue aims to demonstrate the limited predictability and high level of uncertainty in practically all important
areas of our lives, and the implications of this. It summarizes the huge body of solid empirical evidence accumulated over
the past several decades that proves the disastrous consequences of inaccurate forecasts in areas ranging from the economy and
business to floods and medicine. The big problem is, however, that the great majority of people, decision and policy makers alike,
still believe not only that accurate forecasting is possible, but also that uncertainty can be reliably assessed. Reality, however,
shows otherwise, as this special issue proves. This paper discusses forecasting accuracy and uncertainty, and distinguishes three
distinct types of predictions: those relying on patterns for forecasting, those utilizing relationships as their basis, and those
for which human judgment is the major determinant of the forecast. In addition, the major problems and challenges facing
forecasters and the reasons why uncertainty cannot be assessed reliably are discussed using four large data sets. There is also
a summary of the eleven papers included in this special issue, as well as some concluding remarks emphasizing the need to be
rational and realistic about our expectations and avoid the common delusions related to forecasting.
c© 2009 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

Keywords: Forecasting; Accuracy; Uncertainty; Low level predictability; Non-normal forecasting errors; Judgmental predictions

1. Introduction

The unknown future is a source of anxiety, giving
rise to a strong human need to predict it in order to
reduce, or ideally eliminate, its inherent uncertainty.
The demand for forecasts has created an ample supply
of “experts” to fulfill it, from augurs and astrologists to
economists and business gurus. Yet the track record of

∗ Corresponding editor. Tel.: +30 6977661144.
E-mail addresses: smakrid@otenet.gr (S. Makridakis),

nnt@fooledbyrandomness.com (N. Taleb).
1 Tel.: +1 718 260 3599; fax: +1 718 260 3355.

almost all forecasters is dismal. Worse, the accuracy
of “scientific” forecasters is often no better than that
of simple benchmarks (e.g. today’s value, or some
average). In addition, the basis of their predictions is
often as doubtful as those of augurs and astrologists.
In the area of economics, who predicted the subprime
and credit crunch crises, the Internet bubble, the Asian
contagion, the real estate and savings and loans crises,
the Latin American lending calamity, and the other
major disasters? In business, who “predicted” the
collapse of Lehman Brothers, Bear Stearns, AIG,
Enron or WorldCom (in the USA), and Northern Rock,

0169-2070/$ - see front matter c© 2009 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.ijforecast.2009.05.013
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Royal Bank of Scotland, Parmalat or Royal Ahold (in
Europe); or the practical collapse of the entire Iceland
economy? In finance, who predicted the demise of
LTCM and Amaranth, or the hundreds of mutual and
hedge funds that close down every year after incurring
huge losses? And these are just the tip of the iceberg.

In the great majority of situations, predictions
are never accurate. As is mentioned by Orrell
and McSharry (this issue), the exception is with
mechanical systems in physics and engineering. The
predictability of practically all complex systems
affecting our lives is low, while the uncertainty
surrounding our predictions cannot be reliably
assessed. Perpetual calendars in handheld devices,
including watches, can show the exact rise and set of
the sun and the moon, as well as the phases of the
moon, up to the year 2099 and beyond. It is impressive
that such small devices can provide highly accurate
forecasts. For instance, they predict that on April 23,
2013, in Greece:

The sun will rise at 5:41 and set at 7:07
The moon will rise at 4:44 and set at 3:55
The phase of the moon will be more than 3/4 full,
or 3 days from full moon.

These forecasts are remarkable, as they concern
so many years into the future, and it is practically
certain that they will be perfectly accurate so many
years from now. The same feeling of awe is felt when
a spaceship arrives at its exact destination after many
years of traveling through space, when a missile hits its
precise target thousands of kilometers away, or when
a suspension bridge spanning 2000 m can withstand a
strong earthquake, as predicted in its specifications.

Physics and engineering have achieved amazing
successes in predicting future outcomes. By identify-
ing exact patterns and precise relationships, they can
extrapolate or interpolate them, to achieve perfect, er-
ror free forecasts. These patterns, like the orbits of
celestial objects, or relationships like those involv-
ing gravity, can be expressed with exact mathemati-
cal models that can then be used for forecasting the
positions of the sun and the moon on April 23, 2013,
or firing a missile to hit a desired target thousands of
kilometers away. The models used make no significant
errors, even though they are simple and can often be
programmed into hand-held devices.

Predictions involving celestial bodies and physical
law type relationships that result in near-perfect, error

free forecasts are the exception rather than the rule—
and forecasting errors are of no serious consequence,
thanks to the “thin-tailedness” of the deviations.
Consider flipping a coin 10 times; how many heads
will appear? In this game there is no certainty about
the outcome, which can vary anywhere from 0 to 10.
However, even with the most elementary knowledge of
probability, the best forecast for the number of heads
is 5, the most likely outcome, which is also the average
of all possible ones. It is possible to work out that the
chance of getting exactly five heads is 0.246, or to
compute the corresponding probability for any other
number.

The distribution of errors, when a coin is flipped
10 times and the forecast is 5 heads, is shown in
Fig. 1, together with the actual results of 10,000
simulations. The fit between the theoretical and actual
results is remarkable, signifying that uncertainty can
be assessed correctly when flipping a coin 10 times.

Games of chance like flipping coins, tossing
dice, or spinning roulette wheels have an extremely
nice property: the events are independent, while the
probability of success or failure is constant over all
trials. These two conditions allow us to calculate both
the best forecast and the uncertainty associated with
various occurrences. Moreover, when n, the number
of trials, is large, the central limit theorem applies,
guaranteeing that the distribution around the mean,
the most likely forecast, can be approximated by a
normal curve, knowing that the larger the value of
n the better the approximation. Even when a coin is
tossed 10 times (n = 10), the distribution of errors,
with a forecast of 5, can be approximated pretty well
with a normal distribution, as can be seen in Fig. 1.

With celestial bodies and physical law relation-
ships, we can achieve near-perfect predictions. With
games of chance, we know that there is no certainty,
but we can figure out the most appropriate forecasts
and estimate precisely the uncertainty involved. In the
great majority of real life situations, however, there
is always doubt as to which is the “best” forecast,
and, even worse, the uncertainty surrounding a fore-
cast cannot be assessed, for three reasons. First, in
most cases, errors are not independent of one another;
their variance is not constant, while their distribution
cannot be assured to follow a normal curve—which
means that the variance itself will be either intractable
or a poor indicator of potential errors, what has been
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Fig. 1. The erros assuming 5 heads when a coin is flipped 10 times (10,000 replications).

called “wild randomness” by Mandelbrot (1963). Sec-
ond, there is always the chance of highly unlikely or
totally unexpected occurrences materializing — and
these can play a large role (Taleb, 2007). Third, there
is a severe problem outside of artificial setups, such
as games: probability is not observable, and it is quite
uncertain which probabilistic model to use.

In addition, we must remember that we do not fore-
cast for the sake of forecasting, but for some spe-
cific purpose, so we must realize that some forecast
errors can cause harm or missed opportunities, while
others can be benign. So to us, any analysis of fore-
casting needs to take the practical dimension into ac-
count: both the consequences of forecast errors and the
fragility and reliability of predictions. In the case of
low reliability, we need to know what to do, depend-
ing on the potential losses and opportunities involved.

2. The accuracy and uncertainty in forecasting

This section examines each of two distinct
issues associated with forecasting: the accuracy of
predictions and the uncertainty surrounding them. In
doing so, it distinguishes three types of predictions:
(a) those involving patterns, (b) those utilizing
relationships, and (c) those based primarily on human
judgment. Each of these three will be covered using

information from empirical studies and three concrete
examples, where ample data are available.

2.1. The accuracy when forecasting patterns

The M-Competitions have provided abundant
information about the accuracy of all major time series
forecasting methods aimed at predicting patterns.
Table 1 lists the overall average accuracies for all
forecasting horizons for the 4004 series used in the
M-Competition (Makridakis et al., 1982) and the
M3-Competition (Makridakis & Hibon, 2000). The
table includes five methods. Naı̈ve 1 is a simple,
readily available benchmark. Its forecasts for all
horizons up to 18 are the latest available value.
Naı̈ve 2 is the same as Naı̈ve 1 except that the
forecasts are appropriately seasonalized for each
forecasting horizon. Single exponential smoothing
is a simple method that averages the most recent
values, giving more weight to the latest ones, in
order to eliminate randomness. Dampen exponential
smoothing is similar to single, except that it first
smooths the most recent trend in the data to remove
randomness and then extrapolates and dampens, as
its names implies, such a smoothed trend. Single
smoothing was found to be highly accurate in the
M- and M3-Competitions, while dampen was one
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Table 1
MAPEa (average absolute percentage error) of various methods and percentage improvements.

MAPEs: Forecasting horizons Improvement
(in Avg. MAPE)

% Improvement in Avg. MAPE:

1st 6th 18th Avg. MAPE
(1–18 horizons)

over
Naı̈ve1

Naı̈ve2
over
Naı̈ve1

Single
over
Naı̈ve2

Dampen
over
Single

Box–Jenkins
over
Dampen

Naı̈ve1 11.7% 18.9% 24.6% 17.9%
Naı̈ve2 10.2% 16.9% 22.1% 16.0% 1.9% 11.6%
Single exponential
smoothing

9.3% 16.1% 21.1% 15.0% 2.9% 6.4%

Dampen exponential
smoothing

8.7% 15.0% 19.2% 13.6% 4.3% 8.1%

The Box–Jenkins
methodology to
ARIMA models

9.2% 14.9% 19.8% 14.2% 3.7% −2.5%

a All MAPEs and % improvements are symmetric; that is, the divisor is: (Method1 – Method2)/(0.5∗Method1 + 0.5∗Method2).

of the best methods in each of these competitions.
Finally, the Box–Jenkins methodology with ARIMA
models, a statistically sophisticated method that
identifies and fits the most appropriate autoregressive
and/or moving average model to the data, was less
accurate overall than dampen smoothing.

Table 1 shows the MAPEs of these five methods
for forecasting horizons 1, 6 and 18, as well as the
overall average of all 18 forecasting horizons. The
forecasting errors start at around 10% for one period
ahead forecasts, and almost double for 18 periods
ahead. These huge errors are typical of what can be
expected when predicting series similar to those of the
M- and M3-Competitions (the majority consisting of
economic, financial and business series). Table 1 also
shows the improvements in MAPE of the four methods
over Naı̈ve 1, which was used as a benchmark. For
instance, Naı̈ve 2 is 1.9% more accurate than Naı̈ve
1, a relative improvement of 11.6%, while dampen
smoothing is 4.3% more accurate than Naı̈ve 1, a
relative improvement of 27.2%.

The right part of Table 1 provides information
about the source of the improvements in MAPE. As
the only difference between Naı̈ve 1 and Naı̈ve 2 is
that the latter captures the seasonality in the data, this
means that the 11.6% improvement (the biggest of all)
brought by Naı̈ve 2 is due to predicting the seasonality
in the 4004 series. An additional improvement of
6.4% comes from single exponential smoothing,
which averages the most recent values in order to
eliminate random noise. The final improvement of

8.1%, on top of seasonality and randomness, is due to
dampen smoothing, which eliminates the randomness
in the most recent trend (we can call this trend the
momentum of the series). Finally, the Box–Jenkins
method is less accurate than dampen smoothing by
0.6%, or, in relative terms, has a decrease of 2.5% in
overall forecasting accuracy.

As dampen smoothing cannot predict turning
points, we can assume that the Box–Jenkins does not
either, as it is less accurate than dampen. In addition,
dampen smoothing is considerably more accurate
than Holt’s exponential smoothing (not shown in
Table 1), which extrapolates the most recent smoothed
trend, without dampening. This finding indicates that,
on average, trends do not continue uninterrupted,
and should not, therefore, be extrapolated. Cyclical
turns, for instance, reverse established trends, with
the consequence of huge errors if such trends
are extrapolated assuming that they will continue
uninterrupted.

2.2. The uncertainty when forecasting patterns

What is the uncertainty in the MAPEs shown in
Table 1? Firstly, uncertainty increases together with
the forecasting horizon. Secondly, such an increase
is bigger than that postulated theoretically. However,
it has been impossible to establish the distribution of
forecasting errors in a fashion similar to that shown
in Fig. 1 or Table 1, as the number of observations in
the series in the M-Competitions is not large enough.
For this reason, we will demonstrate the uncertainty in
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Fig. 2. Predicted and theoretical number of rainy days.

forecasting by using four long series, allowing us to
look at the distributions of forecasting errors.

Rainfall data from January 1, 1971 to May 6, 2008
(n = 13,648) in Amsterdam show that the chance of
rain on any given day is very close to that of flipping
a coin (0.506, to be precise). Since it rains more
during some periods than during others (i.e. events
are not independent), we can use Naı̈ve 1 to improve
our ability to forecast. By doing so, we increase the
probability of correctly predicting rain from 0.506,
assuming that rainy days are independent of each
other, to 0.694. Fig. 2 shows the theoretical and actual
forecasting errors using Naı̈ve 1. The fit between the
theoretical and actual errors is remarkable, indicating
that we can estimate the uncertainty of the Naı̈ve
1 model with a high degree of reliability when
using the theoretical estimates. It seems that in
binary forecasting situations, such as rain or no rain,
uncertainty can be estimated reliably.

Fig. 3 shows the average daily temperatures in
Paris for each day of the year, using data from
January 1, 1900 to December 31, 2007. Fig. 3
shows a smooth pattern, with winter days having the
lowest temperatures and summer days the highest
ones, as expected. Having identified and estimated
this seasonal pattern, the best forecast suggested by
meteorologists for, say, January 1, 2013, is the average

of the temperatures for all 108 years of data, or
3.945 ◦C.

However, it is clear that the actual temperature on
1/1/2013 will, in all likelihood, be different from this
average. An idea of the possible errors or uncertainty
around this average prediction can be inferred from
Fig. 4, which shows the 108 errors if we use 3.945,
the average for January 1, as the forecast. These errors
vary from −13 to 8 degrees, with most of them being
between 7 and 11 ◦C. The problem with Fig. 4,
however, is that the distribution of errors does not
seem to be well behaved. This may be because we
do not have enough data (a problem with most real
life series) or because the actual distribution of errors
is not normal or even symmetric. Thus, we can say
that our most likely prediction is 3.945 degrees, but it
is difficult to specify the range of uncertainty in this
example with any degree of confidence.

The number of forecasting errors increases signifi-
cantly when we make short term predictions, like the
temperature tomorrow, and use Naı̈ve 1 as the forecast
(meteorologists can improve the accuracy of predict-
ing the weather over that of Naı̈ve 1 for up to three
days ahead). If we use Naı̈ve 1, the average error is
zero, meaning that Naı̈ve 1 is an unbiased forecast-
ing model, with a standard deviation of 2.71 degrees
and a range of errors from −11.2 to 11 degrees. The
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Fig. 3. Average daily temperatures in Paris: 1900 to 2007.

Fig. 4. Errors from the mean in daily temperatures (in Celsius) on January 1st: 1900–2007.

distribution of these errors is shown in Fig. 5, super-
imposed on a normal curve.

Two observations come from Fig. 5. First, there
are more errors in the middle of the distribution than
postulated by the normal curve. Second, the tails of

the error distribution are much fatter than if they
were following a normal curve. For example, there
are 14 errors of temperature less than −8.67 degrees,
corresponding to more than 4 standard deviations from
the mean. This is a practical impossibility if the actual
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Fig. 5. Paris temperatures 1900–2007: Daily changes.

Fig. 6. The daily forecasting errors for the DJIA, 1900–2007.

distribution was a normal one. Similarly, there are
175 errors outside the limits of the mean ±3 standard
deviations, versus 69 if the distribution was normal.
Thus, can we say that the distribution of errors can

be approximated by a normal curve? The answer is
complicated, even though the differences are not as
large as those of Fig. 6, describing the errors of the
next example: the DJIA.
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Table 2
DJIA 1900–2000: Worst-best daily returns.

Fig. 6 shows the same information as Fig. 5,
except that it refers to the values of the DJIA when
Naı̈ve 1 is used as the forecasting model. The data
(n = 29,339) cover the same period as the Paris
temperatures, January 1, 1900 to December 31, 2007
(there are fewer observations because the stock market
is not open during weekends and holidays). The actual
distribution of Fig. 6 also does not follow a normal
curve. The middle values are much higher than those
of Fig. 5, while there are many more values outside
the limits of ±4 standard deviations from the mean.
For instance, there are 184 values below and above
4 standard deviations, while there should not be any
such values if the distribution was indeed normal.2

Table 2 further illustrates the long, fat tails of
the errors of Fig. 6 by showing the 15 smallest and
largest errors and the number of standard deviations

2 Departure from normality is not accurately measured by
counting the number of observations in excess of 4, 5, or 6
standard deviations (sigmas), but in looking at the contribution of
large deviations to the total properties. For instance, the Argentine
currency froze for a decade in the 1990s, then had a large jump. Its
kurtosis was far more significant than the Paris weather, although
we only had one single deviation in excess of 4 sigmas. This is the
problem with financial measurements that discard the effect of a
single jump.

away from the mean such errors correspond to (they
range from 6.4 to 21.2 standard deviations). Such large
errors could not have occurred in many billions of
years if they were part of a normal distribution.

The fact that the distribution of errors in Fig. 6 is
much more exaggerated than that of Fig. 5 is due to
the human ability to influence the DJIA, which is not
the case with temperatures. Such an ability, together
with the fact that humans overreact to both good and
bad news, increases the likelihood of large movements
in the DJIA. There is no other way to explain the
huge increases/decreases shown in Table 2, as it is not
possible for the capitalization of all companies in the
DJIA to lose or gain such huge amounts in a single day
by real factors.

Another way to explain the differences between
the two figures is that temperature is a physical
random variable, subject to physical laws, while
financial markets are informational random variables
that can take any value without restriction—there
are no physical impediments to the doubling of a
price. Although physical random variables can be non-
normal owing to nonlinearities and cascades, they
still need to obey some structure, while informational
random variables do not have any tangible constraint.
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Fig. 7. The daily forecasting errors for Citigroup, 1977–2008.

Non-normality gets worse where individual stocks
are concerned, as the recent experience with bank
stocks has shown. For instance, the price of Citigroup
dropped 34.7% between September 9 and 17, 2008,
and then increased by 42.7% on the two days of
September 18 and 19. These are huge fluctuations
that are impossible to explain assuming independence
and well behaved errors (the mean daily return
of Citigroup is 0.044% and the standard deviation
is 2.318%). Therefore, the uncertainty surrounding
future returns of Citigroup cannot be also assessed
either, as the distribution has long, fat tails (see
Fig. 7), and its errors are both proportionally more
concentrated in the middle, and have proportionally
more extreme values in comparison to those of the
DJIA shown in Fig. 6.

2.3. The accuracy and uncertainty when forecasting
relationships

There is no equivalent of the M-Competitions to
provide us with information about the post-sample
forecasting accuracy of relationships. Instead, econo-
metricians use the R2 value to determine the goodness
of fit of how much better the average relationship is in
comparison to the mean (used as a benchmark).

Estimating relationships, like patterns, requires
“averaging” of the data to eliminate randomness.
Fig. 8 shows the heights of 1078 fathers and sons,3

as well as the average of such a relationship passing
through the middle of the data.

The most likely prediction for the height of a son
whose father’s height is 180 cm is 178.59 cm, given
that the average relationship is:

Height Son = 86.07 + 0.514(Height Father)

= 178.59. (1)

Clearly, it is highly unlikely that the son’s height
will be exactly 178.59, the average postulated by
the relationship, as the pairs of heights of fathers
and sons fluctuate a great deal around the average
shown in Fig. 8. The errors, or uncertainty, in the
predictions depend upon the sizes of the errors and
their distribution. These errors, shown in Fig. 9,
fluctuate from about −22.5 to +22.8 cm, with the
big majority being between −12.4 and +12.4. In
addition, the distribution of forecast errors seems more
like a normal curve, although there are more negative

3 These are data introduced by Karl Pearson, a disciple of Sir
Francis Galton.
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Fig. 8. Heights: Fathers and sons.

Fig. 9. The residual errors of the relationship height of fathers/sons.

errors close to the mean than postulated by the normal
distribution, and more very small and very large ones.
Given such differences, if we can assume that the
distribution of errors is normal, we can then specify

a 95% level of uncertainty as being:

Height Son = 86.07 + 0.514(Height Father)
±1.96(6.19) (2)

Please cite this article in press as: Makridakis, S., & Taleb, N. Decision making and planning under low levels of predictability. International
Journal of Forecasting (2009), doi:10.1016/j.ijforecast.2009.05.013



ARTICLE  IN  PRESS
S. Makridakis, N. Taleb / International Journal of Forecasting ( ) – 11

Fig. 10. Residual errors vs heights of sons.

(6.19 is the standard deviation of residuals).

Thus,

Height of Son = 178.59 ± 12.3.

Even in this simple example, ±12.3 cm indicates a
lot of uncertainty in the prediction, which also suffers
from the fact that the distribution of errors is not
entirely normal. In addition, there is another problem
that seriously affects uncertainty. If the errors are
plotted against the heights of the sons (Fig. 10), they
show a strong correlation, implying that expression
(1) underestimates short heights and overestimates
tall ones. It is doubtful, therefore, that the forecast
specified by expression (1) is the best available for
the heights of sons, while the uncertainty shown in
expression (2) cannot be estimated correctly, as the
errors are highly correlated. Finally, there is an extra
problem when forecasting using relationships: the
values of the independent variables must, in the great
majority of cases, be predicted (this is not the case with
(1) as the height of the father is known), adding an
extra level of uncertainty to the desired prediction.

Forecasts from econometric models used to be pop-
ular, giving rise to an industry with revenues in the
hundreds of millions of dollars. Today, econometric
models have somewhat fallen out of fashion, as em-
pirical studies have showed that their predictions were

less accurate than those of time series methods like
Box–Jenkins. Today, they are only used by govern-
mental agencies and international organizations for
simulating policy issues and better understanding the
consequences of these issues. Their predictive ability
is not considered of value (see Orrell & McSharry,
this issue), as their limitations have been accepted by
even the econometricians themselves, who have con-
centrated their attention on developing more sophisti-
cated models that can better fit the available data.

Taleb (2007) revisits the idea that such conse-
quences need to be taken into account in decision mak-
ing. He shows that forecasting has a purpose, and it is
the purpose that may need to be modified when we are
faced with large forecasting errors and huge levels of
uncertainty that cannot be assessed reliably.

2.4. Judgmental forecasting and uncertainty

Empirical findings in the field of judgmental
psychology have shown that human judgment is
even less accurate at making predictions than simple
statistical models. These findings go back to the
fifties with the work of psychologist Meehl (1954),
who reviewed some 20 studies in psychology and
discovered that the “statistical” method of diagnosis
was superior to the traditional “clinical” approach.
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When Meehl published a small book about his
research findings in 1954, it was greeted with outrage
by clinical psychologists all over the world, who
felt professionally diminished and dismissed his
findings. Many subsequent studies, however, have
confirmed Meehl’s original findings. A meta-analysis
by Grove, Zald, Lebow, Snitz, and Nelson (2000)
summarized the results of 136 studies comparing
clinical and statistical predictions across a wide range
of environments. They concluded by stating:

“We identified no systematic exceptions to the general
superiority (or at least material equivalence) of
mechanical prediction. It holds in general medicine,
in mental health, in personality, and in education and
training settings. It holds for medically trained judges
and for psychologists. It holds for inexperienced and
seasoned judges”.

A large number of people can be wrong, and know
that they can be wrong, brought about by the comfort
of a system. They continue their activities “because
other people do it”. There have been no studies
examining the notion of the diffusion of responsibility
in such problems of group error.

As Goldstein and Gigerenzer (this issue) and
Wright and Goodwin (this issue) point out, the biases
and limitations of human judgment affect its ability
to make sound decisions when optimism influences
its forecasts. In addition, it seems that the forecasts
of experts (Tetlock, 2005) are not more accurate than
those of other knowledgeable people. Worse, Tetlock
found out that experts are less likely to change their
minds than non-experts, when new evidence appears
disproving their beliefs.

The strongest evidence against the predictive
value of human judgment comes from the field
of investment, where a large number of empirical
comparisons have proven, beyond the slightest doubt,
that the returns of professional managers are not better
than a random selection of stocks or bonds. As there
are around 8500 investment funds in the USA, it
is possible that a fund can beat, say, the S&P500,
for 13 years in a row. Is this due to the ability of
its managers or to chance? If we assume that the
probability of beating the S&P 500 each year is 50%,
then if there were 8192 funds, it would be possible
for one of them to beat the S&P500 for 13 years in
a row by pure chance. Thus, it is not obvious that

the funds that outperform the market for many years
in a row do so by the ability of their managers and
rather than because they happen to be lucky. So far
there is no empirical evidence that has conclusively
proven that professional managers have consistently
outperformed the broad market averages due to their
own skills (and compensation). In addition to the field
of investments, Makridakis, Hogarth, and Gaba (2009)
have concluded that in the areas of medicine, as well as
business, the predictive ability of doctors and business
gurus is not better than simple benchmarks. These
findings raise the question of the value of experts: why
pay them to provide forecasts that are not better than
chance, or than simple benchmarks like the average or
the latest available value?

Another question is, how well can human judgment
assess future uncertainty? Empirical evidence has
shown that the ability of people to correctly assess
uncertainty is even worse than that of accurately
predicting future outcomes. Such evidence has
shown that humans are overconfident of positive
expectations, while ignoring or downgrading negative
information. This means that when they are asked
to specify confidence intervals, they make them too
tight, while not considering threatening possibilities
like the consequences of recessions, or those of
the current subprime and credit crisis. This is a
serious problem, as statistical methods also cannot
predict recessions and major financial crises, creating
a vacuum resulting in surprises and financial hardships
for large numbers of people, as nobody has provided
them with information to enable them to consider
the full range of uncertainty associated with their
investments or other decisions and actions.

3. A summary of the eight papers of this issue

This introductory paper by Makridakis and Taleb
demonstrates the limited predictability and high level
of uncertainty in practically all important areas of our
lives, and the implications of this. It presents empirical
evidence proving this limited predictability, as well
as examples illustrating the major errors involved
and the high levels of uncertainty that cannot be
adequately assessed because the forecasting errors are
not independent, normally distributed and constant.
Finally, the paper emphasizes the need to be rational
and realistic about our expectations from forecasting,
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and avoid the common illusion that predictions can be
accurate and that uncertainty can be assessed correctly.

The second paper, by Orrell and McSharry, states
that complex systems cannot be reduced to simple
mathematical laws and be modeled appropriately.
The equations that attempt to represent them are
only approximations to reality, and are often highly
sensitive to external influences and small changes in
parameterization. Most of the time they fit past data
well, but are not good for predictions. Consequently,
the paper offers suggestions for improving forecasting
models by following what is done in systems biology,
integrating information from disparate sources in
order to achieve such improvements.

The third paper, by Taleb, provides evidence of
the problems associated with econometric models, and
proposes a methodology to deal with such problems
by calibrating decisions, based on the nature of the
forecast errors. Such a methodology classifies decision
payoffs as simple or complex, and randomness as thin
or fat tailed. Consequently, he concentrates on what he
calls the fourth quadrant (complex payoffs and fat tail
randomness), and proposes solutions to mitigate the
effects of possibly inaccurate forecasts based on the
nature of complex systems.

The fourth paper, by Goldstein and Gigerenzer,
provides evidence that some of the fast and frugal
heuristics that people use intuitively are able to make
forecasts that are as good as or better than those of
knowledge-intensive procedures. By using research on
the adaptive toolbox and ecological rationality, they
demonstrate the power of using intuitive heuristics
for forecasting in various domains, including sports,
business, and crime.

The fifth paper, by Ioannidis, provides a wealth
of empirical evidence that while biomedical research
is generating massive amounts of information about
potential prognostic factors for health and disease, few
prognostic factors have been robustly validated, and
fewer still have made a convincing difference in health
outcomes or in prolonging life expectancy. For most
diseases and outcomes, a considerable component of
the prognostic variance remains unknown, and may
remain so in the foreseeable future. Ioannidis suggests
that in order to improve medical predictions, a
systematic approach to the design, conduct, reporting,
replication, and clinical translation of prognostic
research is needed. Finally, he suggests that we

need to recognize that perfect individualized health
forecasting is not a realistic target in the foreseeable
future, and we have to live with a considerable degree
of residual uncertainty.

The sixth paper, by Fink, Lipatov and Konitzer,
examines the accuracy and reliability of the diagnoses
made by general practitioners. They note that only
10% of the results of consultations in primary care
can be assigned to a confirmed diagnosis, while 50%
remain “symptoms”, and 40% are classified as “named
syndromes” (“picture of a disease”). In addition, they
provide empirical evidence collected over the last
fifty years showing that less than 20% of the most
frequent diagnoses account for more than 80% of
the results of consultations. Their results prove that
primary care has a severe “black swan” element
in the vast majority of consultations. Some critical
cases involving “avoidable life-threatening dangerous
developments” such as myocardial disturbance, brain
bleeding and appendicitis may be masked by those
often vague symptoms of health disorders ranked in
the 20% of most frequent diagnoses. They conclude
by proposing that (1) primary care should no longer
be defined only by “low prevalence” properties, but
also by its black-swan-incidence-problem; (2) at the
level of everyday practice, diagnostic protocols are
necessary to make diagnoses more reliable; and (3) at
the level of epidemiology, a system of classifications
is crucial for generating valid information by which
predictions of risks can be improved.

The seventh paper, by Makridakis, Hogarth and
Gaba, provides further empirical evidence that accu-
rate forecasting in the economic and business world
is usually not possible, due to the huge uncertainty,
as practically all economic and business activities are
subject to events which we are unable to predict. The
fact that forecasts can be inaccurate creates a serious
dilemma for decision and policy makers. On the one
hand, accepting the limits of forecasting accuracy im-
plies being unable to assess the correctness of deci-
sions and the surrounding uncertainty. On the other
hand, believing that accurate forecasts are possible
means succumbing to the illusion of control and expe-
riencing surprises, often with negative consequences.
They suggest that the time has come for a new attitude
towards dealing with the future that accepts our limited
ability to make predictions in the economic and busi-
ness environment, while also providing a framework
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that allows decision and policy makers to face the
future — despite the inherent limitations of forecast-
ing and the huge uncertainty surrounding most future-
oriented decisions.

The eighth paper, by Wright and Goodwin, looks
at scenario planning as an aid to anticipation of the
future under conditions of low predictability, and
examines its success in mitigating issues to do with
inappropriate framing, cognitive and motivational
bias, and inappropriate attributions of causality.
They consider the advantages and limitations of
such planning and identify four potential principles
for improvement: (1) challenging mental frames,
(2) understanding human motivations, (3) augmenting
scenario planning through adopting the approach of
crisis management, and (4) assessing the flexibility,
diversity, and insurability of strategic options in a
structured option-against-scenario evaluation.

The ninth paper, by Green, Armstrong and
Soon, proposes a no change, benchmark model for
forecasting temperatures which they argue is the
most appropriate one, as temperatures exhibit strong
(cyclical) fluctuations and there is no obvious trend
over the past 800,000 years that Antarctic temperature
data from the ice-core record is available. These data
also show that the temperature variations during the
late 1900s were not unusual. Moreover, a comparison
between the ex ante projections of the benchmark
model and those made by the Intergovernmental
Panel on Climate Change at 0.03 ◦C-per-year were
practically indistinguishable from one another in the
small sample of errors between 1992 through 2008.
The authors argue that the accuracy of forecasts from
the benchmark is such that even perfect prediction
would be unlikely to help policymakers in getting
forecasts that are substantively more accurate than
those from a no change, benchmark model.

Because global warming is an emotional issue,
the editors believe that whatever actions are taken to
reverse environmental degradation cannot be justified
on the accuracy of predictions of mathematical or
statistical models. Instead, it must be accepted that
accurate predictions are not possible and uncertainty
cannot be reduced (a fact made obvious by the
many and contradictory predictions concerning global
warming), and whatever actions are taken to protect
the environment must be justified based on other

reasons than the accurate forecasting of future
temperatures.

The tenth paper, by the late David Freedman,
shows that model diagnostics have little power un-
less alternative hypotheses can be narrowly defined.
For instance, independence of observations cannot
be tested against general forms of dependence. This
means that the basic assumptions in regression mod-
els cannot be inferred from the data. The same is true
with the proportionality assumption, in proportional-
hazards models, which is not testable. Specifica-
tion error is a primary source of uncertainty in
forecasting, and such uncertainty is difficult to re-
solve without external calibration, while model-based
causal inference is even more problematic to test.
These problems decrease the value of our models and
increase the uncertainty of their predictions.

The final paper of this issue, written by the
editors, is a summary of the major issues surrounding
forecasting, and also puts forward a number of
ideas aimed at a complex world where accurate
predictions are not possible and where uncertainty
reigns. However, once we accept the inaccuracy of
forecasting, the critical question is, how can we plan,
formulate strategies, invest our savings, manage our
health, and in general make future-oriented decisions,
accepting that there are no crystal balls? This is where
the editors believe that much more effort and thinking
is needed, and where they are advancing a number
of proposals to avoid the negative consequences
involved while also profiting from the low levels of
predictability.

4. The problems facing forecasters

The forecasts of statistical models are “mechan-
ical”, unable to predict changes and turning points,
and unable to make predictions for brand new situa-
tions, or when there are limited amounts of data. These
tasks require intelligence, knowledge and an ability to
learn which are possessed only by humans. Yet, as
we saw, judgmental forecasts are less accurate than
the brainless, mechanistic ones provided by statistical
models. Forecasters find themselves between Caryb-
dis and Scylla. On the one hand, they understand the
limitations of the statistical models. On the other hand,
their own judgment cannot be trusted. The biggest ad-
vantage of statistical predictions is their objectivity,
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Table 3
Values of daily statistics for DJIA and Paris temperatures for each decade from 1900 to 2008.

which seems to be more important than the intelli-
gence, knowledge and ability of humans to learn. The
problem with humans is that they suffer from incon-
sistency, wishful thinking and all sorts of biases that
diminish the accuracy of their predictions. The biggest
challenge and only solution to the problem is for
humans to find ways to exploit their intelligence,
knowledge and ability to learn while avoiding their in-
consistencies, wishful thinking and biases. We believe
that much work can be done in this direction.

Below, we summarize the problem of limited
predictability and high levels of uncertainty using the
daily values of the DJIA and the Paris temperatures.
The availability of fast computers and practically
unlimited memory has allowed us to work with long
series and study how well they can forecast and
identify uncertainty. Table 3 shows various statistics
for the daily % changes in the DJIA and the daily
changes in Paris temperatures, for each decade from
1900 to 2008 (the 2000 to 2008 period does not cover
the whole decade). Table 3 allows us to determine
how well we can forecast and assess uncertainty for
the decade 1910–1920, given the information for the
decade 1900–1910, for the decade 1920–1930 given
the information for 1910–1920, and so on.

4.1. The mean percentage change of the DJIA and the
average change in Paris temperature

The mean percentage change in the DJIA for the
decade 1900–1910 is 0.019%. If such a change had
been used as the forecast for the decade 1910–1920,
the results would have been highly accurate. In ad-
dition, the volatility in the daily percentage changes
from 1900–1910 would have been an excellent pre-
dictor for 1910–1920. The same is true with both the
means and the standard deviations of the changes in

daily temperatures, as they are very similar in the
decades 1900–1910 and 1910–1920. Starting from the
decade 1920–1930 onwards, however, both the means
and the standard deviations of the percentage daily
changes in the DJIA vary a great deal, from 0.001%
in the 1930s to 0.059% in the 1990s (this means that
$10,000 invested at the beginning of 1930 would have
become $10,334 by the end of 1939, while the same
amount invested at the beginning of 1990 would have
grown to $44,307 by the end of 1999). The differences
are equally large for the standard deviations, which
range from 0.65% in the 1960s to 1.85% in the 1930s.
On the other hand, the mean daily changes in temper-
atures are small, except possibly for the 2000–2008
period, when they increased to 0.005 of a degree. In
addition, the standard deviations have remained pretty
much constant throughout all eleven decades.

Table 3 conveys a clear message. Forecasting for
some series, like the DJIA, cannot be accurate, as the
assumption of constancy of their patterns, and possibly
relationships, is violated. This means that predicting
for the next decade, or any other forecasting horizon,
cannot be based on historical information, as both the
mean and the fluctuations around the mean vary too
much from one decade to another. Does the increase to
0.005 in the changes in daily Paris temperature for the
period of 2000–2008 indicate global warming? This is
a question we will not attempt to answer, as it has been
dealt with in the paper by Green et al. in this issue.
However, the potential exists that even in series like
temperature we have to worry about a possible change
in the long term trend.

Another technique for looking at differences is
departures from normality. Consider the kurtosis of
the two variables. The 5 largest observations in the
temperature represent 3.6% of the total kurtosis. For
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the Dow Jones, the 5 largest observations represent
38% of the kurtosis (e.g., the kurtosis in the decade
1970–1980 is 1.89, while that of the following decade
is an incredible 68.84—see Table 3). Furthermore,
under aggregation (i.e., by taking longer observation
intervals of 1 week, 1 fortnight, or 1 month), the
kurtosis of the temperature drops, while that of the
stock market does not change.

In real life, most series behave like the DJIA;
in other words, humans can influence their patterns
and affect the relationships involved by their actions
and reactions. In such cases, forecasting is extremely
difficult or even impossible, as it involves predicting
human behavior, something which is practically
impossible. However, even with series like the
temperature human intervention is also possible,
although there is no consensus in predicting its
consequences.

4.2. The uncertainty in predicting changes in DJIA
and Paris temperatures

Having data since 1900 provides us with a unique
opportunity to break it into sub-periods and obtain
useful insights by examining their consistency (see
Table 3), as we have already done for the mean, and we
can now assess the uncertainty in these two series. The
traditional approach to assessing uncertainty assumes
normality and then constructs confidence intervals
around the mean. Such an approach cannot work for
the percentage changes in the DJIA for three reasons.
First, the standard deviations are not constant; second,
the means also change substantially from one decade
to another (see Table 3); and finally, the distribution
is not normal (see Fig. 6). Assessing the uncertainty
in the changes in Paris temperatures does not suffer
from the first or second problem, as the means and
standard deviations are fairly constant. However, the
distribution of changes is not quite normal (see Fig. 5),
as there are a considerable number of extremely large
and small changes, while there are more values around
the mean than in a normal curve.

There is an additional problem when attempting
to assess uncertainty. The distribution of changes
also varies a great deal, as can be seen in Fig. 11.
Worse, this is true not only in the DJIA data, but also
in the temperature data. In the 1970s, for instance,
the distribution of the DJIA percentage changes was

close to normal with not too fat tails (the skew-
ness and kurtosis of the distribution were 0.33 and
1.89 respectively), while that of the 1980s was too
tall in the middle (the kurtosis was 68.84, versus
1.89 in the 1970s) with considerable fat tails on both
ends. Given the substantial differences in the distri-
butions of changes, or errors, is it possible to talk
about assessing uncertainty in statistical models when
(a) the distributions are not normal, even with series
like temperatures; (b) the means and standard devia-
tions change substantially; and (c) the distributions or
errors are not constant? We believe that the answer is a
strong no, which raises serious concerns about the re-
alism of financial models that assume that uncertainty
can be assessed assuming that errors are well behaved,
with a zero mean, a constant variance, a stable distri-
bution and independent errors.

The big advantage of series like the DJIA and
the Paris temperatures is the extremely large number
of available data points that allows us to extract
different types of information, such as that shown
in Table 3, which is based on more than 2500
observations in the case of the DJIA, and 3650 for
the temperatures. Real life series, however, seldom
exceed a few hundred observations at most, making
it impossible to construct distributions similar to those
of Table 3. In such a case we are completely unable
to verify the assumptions required to assure ourselves
that there are not problems with the assessment
of uncertainty. Finally, there is another even more
important assumption, that of independence, that also
fails to hold true, and negatively affects both the
task of forecasting and that of assessing uncertainty.
For instance, it is interesting to note that between
September 15 and December 1, 2008, 52.7% of the
daily fluctuations in the DJIA were greater than the
mean ±3 (standard deviations). In the temperature
changes there are fewer big concentrations of extreme
values, but since 1977 we can observe that the
great majority of such values are negative, again
obliging us to question the independence of series like
temperatures, which seem to be also influenced by
non-random runs of higher and lower temperatures.

5. Conclusions

Forecasting the future is neither easy nor certain. At
the same time, it may seem that we have no choice. But
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(a) The distribution of daily percentage changes in the DJIA in the
1970s.

(b) The distribution of daily percentage changes in the DJIA in the
1980s.

(c) The distribution of daily changes in the Paris temperatures in
the 1970s.

(d) The distribution of daily changes in the Paris temperatures in
the 1980s.

Fig. 11. The distribution of daily changes in the DJIA and Paris temperatures.

in reality we do have a choice: we can make decisions
based on the potential sizes and consequences of
forecasting errors, and we can also structure our lives
to be robust to such errors. In a way, which is the
motivation of this issue, we can make deep changes
in the decision process affected by future predictions.

This paper has outlined the major theme of this
special issue of the IJF. Our ability to predict
the future is limited, with the obvious consequence
of high levels of uncertainty. It has proved such
limited predictability using empirical evidence and
four concrete data sets. Moreover, it has documented
our inability to assess uncertainty correctly and
reliably in real-life situations, and has discussed the
major problems involved. Unfortunately, patterns and

relationships are not constant, while in the great
majority of cases: (a) errors are not well behaved, (b)
their valiance is not constant, (c) the distribution of
errors are not stable, and, worst of all, (d) the errors
are not independent of each other.
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T
here is no particular normative reason to express
or measure volatility in one of several possible
ways, provided we remain consistent. Once we
express it in a particular way, however, substi-

tuting one measure for another will lead to a consequential
mistake.

Suppose we measure volatility in root mean square
deviations from the mean, as in conventional statistics. It
would then be an error to substitute a definition and con-
sider it mean deviation in the course of decision-making,
opinion formation, or descriptions of the property of the
process. Yet people do make this mistake.

This brief note provides experimental evidence that
participants with varied backgrounds in financial markets
err in interpreting a physical linear description (in mean
absolute returns per day) as a calculated non-linear mea-
sure (standard deviation). We illustrate the confusion, and
discuss its implications for financial decision-making and
portfolio risk management.

EXPERIMENTS

To investigate the common understanding of mean
absolute deviation, we asked professionals and students of
finance the question:

A stock (or a fund) has an average return of 0%. It
moves on average 1% a day in absolute value; the
average up move is 1%, and the average down move
is 1%. This does not mean that all up moves are
1%—some are 0.6%, others 1.45%, and so on.
Assume that we live in the Gaussian world where the
returns (or daily percentage moves) can be safely
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modeled using a normal distribution. Assume that
a year has 256 business days. Our questions concern
the standard deviation of returns (i.e., of the per-
centage moves), the sigma that is used for volatility
in financial applications. What is the daily sigma?
What is the yearly sigma?

Our suspicion that there would be considerable con-
fusion is fed by years of hearing options traders make state-
ments like “an instrument that has a daily standard deviation
of 1% should move 1% a day on average.” Not so. In the
Gaussian world, where x is a random variable, assuming a
mean of 0, in expectation, the ratio of standard deviation
to mean deviation should satisfy the equality:

Since mean absolute deviation is about 0.8 times
the standard deviation, in our problem the daily sigma
should be 1.25%, and the yearly sigma should be 20.00%
(which is the daily sigma annualized by multiplying by
16, the square root of the number of business days).

To test the hypothesis that mean absolute deviation
is confused with standard deviation, we ran studies with
three groups: 1) 97 portfolio managers, assistant portfolio
managers, and analysts at investment management compa-
nies who were taking part in a professional seminar; 2) 13
Ivy League graduate students preparing for a career in finan-
cial engineering; and 3) 16 investment professionals working
for a major bank. The question was presented in writing
and explained orally to make sure definitions were clear.

All respondents in the latter two groups turned in
responses, compared to 58 in the first group. One might
expect this sort of self-selection to improve accuracy.

RESULTS

Exhibit 1 shows frequency histograms of responses to
the daily sigma question, converted to decimal notation.
Only 3 of the 87 respondents arrived at the correct answer
of 0.0125. The modal answer of 0.01 made up more than
half of the responses received. Nine people gave responses
of blanks or question marks. Far from symmetrical, the
ratio of underestimations of volatility to overestimations
was 65 to 10.

Performance for yearly sigmas was even worse. No
one submitted a correct response. Here, the modal answer
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was 0.16, which appears to be the correct annualization
of the incorrect daily volatility. Eleven people responded
with blanks or question marks. The ratio of underesti-
mations to overestimations was 76 to 9.

CONCLUSION

The error we point out is more consequential than
it seems. The dominant response of 1% shown in the
Exhibit suggests that even financially and mathematically
savvy decision-makers treat mean absolute deviation and
standard deviation as the same thing. Although a Gaussian
random variable that has a daily percentage move in
absolute terms of 1.00% has a standard deviation of about
1.25%, it can reach up to 1.90% in empirical distribu-
tions (emerging market currencies and bonds). Mean
absolute deviation is by Jensen’s inequality lower than (or
equal to) standard deviation.*

In a world of fat tails, the bias increases dramati-
cally. Consider the vector of dimension 106, composed
of 999,999 elements of 0 and a single one of

Here the standard deviation
would be 1,000 times the average move.

For a Student-t with 3 degrees of freedom (often
used to model returns in financial markets in value at 

10 0 0 0 0 106 6:  { , , , , , }.V = K

E X H I B I T 1
Estimates of Daily Standard Deviation

The top plot represents the responses of investment professionals at a major bank. 
The middle plot represents responses of graduate students in financial engineering
(excluding one outlier at 0.1). The bottom plot represents responses of professional
portfolio managers and analysts. The correct answer under the stated Gaussian
assumptions (0.0125) is shaded in gray.
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risk simulations), standard deviation is 1.57 times mean
deviation:

See Bouchaud and Potters [2003] and Glasserman, 
Heidelberger, and Shahabuddin [2002].

Conversations with our respondents revealed that
they rarely had an immediate understanding of the error
when we pointed it out. Yet when we asked them to pre-
sent the equation for “standard deviation,” they expressed
it flawlessly as the root mean square of deviations from the
mean. Whatever the respondents’ reason for the error, it
did not result from ignorance of the concept. Indeed,
most participants would have failed a basic statistics course
had they not been aware of the mathematical definition,
but when given data that are clearly not a standard devi-
ation, they treat it as one.

Kahneman and Frederick [2002] discuss a similar
problem: that statisticians make basic statistical mistakes
outside the classroom:

The mathematical psychologists who participated
in the survey not only should have known better—
they did know better . . . . Most of them would
have computed the correct answers on the back of
an envelope.

Why is this problem relevant? This sloppiness in
translation between mathematics and applications can have
severe effects, considering that practitioners speak with
co-workers, customers, and the media about volatility on
a regular basis. We know of instances in the financial media
where journalists make the same mistake in explaining
the volatility index VIX to the general public.

Either we have the wrong intuition about the right
volatility, or the right intuition but the measure of volatility
is the wrong one. Two roads lead out of this unfortunate
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situation. Either we can continue defining volatility as we
do, and conduct further research to see if the error can
be made to disappear with training. Or we can do as the
probabilists of the Enlightenment age did. When the intui-
tions of hommes éclairés did not align with the valuations
of the expected value formula, it was the mathematicians
who dreamed up something more intuitive, namely,
expected utility (see Daston [1988]).

Perhaps some day finance will adopt a more natural
metric than standard deviation. Until then, users should
rely on definitions, not intuitions, where volatility is 
concerned.

ENDNOTE

*More technically, the norm 
increases with p.
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ABSTRACT	
  

	
  

	
  

There	
  are	
  two	
  different	
  probabilistic	
  structures:	
  some	
  with	
  “typical”	
  large	
  deviations,	
  others	
  without	
  a	
  
“typicality”	
  of	
  these	
  deviations.	
  Many	
  human	
  judgment	
  errors	
  can	
  come	
  from	
  the	
  application	
  of	
  one	
  

intuition	
  for	
  one	
  domain	
  to	
  take	
  decisions	
  in	
  the	
  second	
  domain,	
  leading	
  to,	
  among	
  others,	
  an	
  increase	
  
in	
  risks.	
  We	
  test	
  whether	
  humans	
  have	
  a	
  natural	
  intuition	
  for	
  the	
  difference.	
  



	
  

Statistical	
  Intuitions	
  and	
  Domains:	
  	
  
The	
  Telescope	
  Test	
  

	
  

Introduction	
  
There	
  are	
  two	
  types	
  of	
  randomness,	
  "thin	
  tailed	
  and	
  "fat	
  tailed",	
  the	
  first	
  being	
  nonscalable,	
  the	
  second	
  

scalable".	
  	
  Missing	
  on	
  the	
  difference	
  (by	
  mistaking	
  the	
  fat	
  tailed	
  domain	
  into	
  a	
  thin-­‐tailed	
  one)	
  can	
  result	
  
in	
  a	
  severe	
  flaw	
  in	
  decision-­‐making	
  as	
  the	
  agent	
  might	
  discount	
  the	
  role	
  of	
  the	
  large	
  deviation	
  in	
  
determining	
  the	
  statistical	
  properties.	
  	
  	
  

One	
  environment	
  (thin-­‐tailed)	
  allows	
  for	
  intrapolation;	
  the	
  other	
  (fat-­‐tailed)	
  requires	
  extrapolation.	
  

Mistaking	
  one	
  domain	
  for	
  another	
  is	
  best	
  illustrated	
  by	
  a	
  passage	
  from	
  the	
  Latin	
  philosopher	
  and	
  poet	
  
Lucretius	
  to	
  the	
  effect	
  that	
  people	
  project	
  the	
  largest	
  possible	
  mountain	
  as	
  equal	
  to	
  the	
  largest	
  
mountain	
  they've	
  seen	
  in	
  their	
  past,	
  clearly	
  the	
  point	
  there	
  is	
  that	
  they	
  had	
  to	
  have	
  known	
  that	
  previous	
  

to	
  encountering	
  such	
  large	
  mountain,	
  the	
  largest	
  they	
  had	
  seen	
  was	
  considerably	
  smaller,	
  yet	
  they	
  
remained	
  oblivious	
  to	
  second	
  order	
  thinking.	
  	
  Indeed	
  it	
  is	
  not	
  uncommon	
  for	
  professionals	
  (not	
  just	
  the	
  
general	
  public)	
  to	
  miss	
  on	
  these	
  second	
  order	
  effect	
  —the	
  crash	
  of	
  1987,	
  in	
  which	
  the	
  market	
  went	
  

down	
  close	
  to	
  23	
  percent	
  in	
  a	
  single	
  day,	
  could	
  not	
  have	
  been	
  guessed	
  in	
  an	
  interpolative	
  way	
  or	
  
methods	
  matching	
  "similarities"	
  from	
  its	
  worst	
  predecessor,	
  a	
  one-­‐day	
  loss	
  of	
  around	
  10	
  percent;	
  yet	
  
operators	
  today	
  work	
  on	
  protecting	
  themselves,	
  thanks	
  to	
  "stress	
  tests"	
  for	
  moves	
  around	
  such	
  level,	
  

not	
  extrapolating	
  into	
  larger	
  losses.	
  Similarly,	
  one	
  sees	
  books	
  written	
  by	
  economists	
  on	
  the	
  structure	
  of	
  
past	
  debt	
  crises	
  (such	
  as	
  	
  Reinhard	
  and	
  Rogoff,	
  2009)	
  that	
  can	
  only	
  be	
  informative	
  if	
  one	
  does	
  not	
  
consider	
  the	
  Lucretius	
  effect,	
  that	
  the	
  largest	
  mountain	
  to	
  be	
  seen	
  will	
  be	
  equal,	
  or	
  similar,	
  to	
  the	
  next	
  

one.	
  Worse	
  of	
  all	
  much	
  of	
  economic	
  risk	
  management	
  by	
  governments	
  worldwide	
  at	
  the	
  time	
  of	
  writing	
  
is	
  based	
  on	
  "stress	
  testing"	
  equally	
  plagued	
  with	
  such	
  lack	
  of	
  rigor	
  —the	
  crisis	
  today	
  having	
  not	
  been	
  

detected	
  by	
  previous	
  stress	
  testing,	
  should	
  not	
  lead	
  to	
  interpolative	
  methods.	
  

Distinction	
  Between	
  Domains:	
  More	
  formally,	
  our	
  distinction	
  between	
  two	
  domains,	
  nonscalable	
  and	
  
scalable	
  along	
  the	
  criterion	
  of	
  a	
  class	
  of	
  distribution	
  that	
  exhibits	
  convergence	
  to	
  the	
  Central	
  Limit	
  
Theorem	
  in	
  applicable	
  time	
  (i.e.,	
  with	
  acceptable	
  preasymptotics).	
  	
  

For	
  nonscalable	
  domains,	
  the	
  conditional	
  expectation	
  of	
  a	
  random	
  variable	
  X,	
  conditional	
  on	
  its	
  

exceeding	
  a	
  number	
  K	
  (henceforth	
  “the	
  boundary”),	
  converge	
  to	
  K	
  for	
  larger	
  values	
  of	
  K.	
  	
  

	
  

For	
  instance,	
  the	
  expectation	
  for	
  a	
  Gaussian	
  variable	
  of	
  mean	
  0,	
  conditional	
  that	
  it	
  exceeds	
  0,	
  is	
  

approximately	
  .8	
  standard	
  deviations.	
  However,	
  when	
  the	
  boundary	
  K	
  equals	
  6	
  standard	
  deviations,	
  the	
  
conditional	
  expectation	
  converges	
  to	
  6	
  standard	
  deviations:	
  the	
  difference	
  between	
  the	
  conditional	
  
expectation	
  and	
  the	
  boundary	
  goes	
  to	
  zero.	
  The	
  same	
  applies	
  to	
  all	
  the	
  random	
  variables	
  that	
  do	
  not	
  

have	
  power-­‐law	
  tails.	
  This	
  induces	
  some	
  “typicality”	
  of	
  large	
  moves.	
  



For	
  scalable	
  random	
  variables,	
  such	
  limit	
  does	
  not	
  seem	
  to	
  hold:	
  	
  

	
  

where	
  c	
  >1,	
  not	
  necessarily	
  of	
  known	
  parametrization.	
  

	
  

Method	
  
Each	
  participant	
  completed	
  one	
  scalable	
  domain	
  item	
  and	
  one	
  non-­‐scalable	
  domain	
  item.	
  Scalable	
  
domain	
  items	
  A	
  and	
  C	
  were	
  completed	
  on	
  paper	
  by	
  68	
  members	
  of	
  the	
  London	
  Business	
  School	
  
participant	
  pool.	
  Non-­‐scalable	
  domain	
  items	
  B	
  and	
  D	
  were	
  completed	
  online	
  by	
  157	
  members	
  of	
  the	
  

School’s	
  online	
  research	
  panel.	
  Item	
  text	
  is	
  as	
  follows:	
  

Scalable	
  domain	
  items	
  
Item	
  A	
  (height):	
  Participants	
  were	
  first	
  asked	
  whether	
  they	
  preferred	
  thinking	
  about	
  height	
  in	
  feet	
  and	
  
inches	
  or	
  meters	
  and	
  centimeters,	
  and	
  given	
  an	
  appropriate	
  questionnaire	
  for	
  this	
  preference.	
  The	
  item	
  
for	
  the	
  metric	
  formulation	
  is	
  as	
  follows.	
  	
  

• We	
  computed	
  the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  1.95	
  meters.	
  Estimate	
  

the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  1.95	
  meters:	
  _____________meters	
  

• We	
  computed	
  the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  2.05	
  meters.	
  Estimate	
  
the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  2.05	
  meters:	
  _____________meters	
  

• We	
  computed	
  the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  2.15	
  meters.	
  Estimate	
  
the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  2.15	
  meters:	
  _____________meters	
  

• We	
  computed	
  the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  2.25	
  meters.	
  Estimate	
  

the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  2.25	
  meters:	
  _____________meters	
  

• We	
  computed	
  the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  2.35	
  meters.	
  Estimate	
  
the	
  average	
  height	
  of	
  men	
  in	
  the	
  USA	
  who	
  are	
  taller	
  than	
  2.35	
  meters:	
  _____________meters	
  

The	
  corresponding	
  values	
  in	
  feet	
  and	
  inches	
  were:	
  6’4”,	
  6’8”,	
  7’0”,	
  7’4”	
  and	
  7’8”.	
  	
  

Item	
  B	
  (life	
  expectancy):	
  The	
  basic	
  item	
  took	
  the	
  form:	
  

• We	
  computed	
  the	
  average	
  age	
  at	
  death	
  of	
  women	
  in	
  the	
  USA	
  who	
  lived	
  more	
  than	
  85	
  years.	
  	
  

Estimate	
  the	
  average	
  age	
  at	
  death	
  of	
  women	
  in	
  the	
  USA	
  who	
  lived	
  more	
  than	
  85	
  years:	
  
__________	
  years.	
  

As	
  with	
  Item	
  A,	
  the	
  basic	
  question	
  was	
  asked	
  four	
  more	
  times	
  by	
  substituting	
  in	
  the	
  following	
  ages:	
  90,	
  

95,	
  100,	
  and	
  105	
  years.	
  



Non-­scalable	
  domain	
  items	
  
Item	
  C	
  (market	
  capitalization):	
  Participants	
  were	
  read	
  “Market	
  capitalization	
  is	
  defined	
  as	
  “an	
  
estimation	
  of	
  the	
  value	
  of	
  a	
  business	
  that	
  is	
  obtained	
  by	
  multiplying	
  the	
  number	
  of	
  shares	
  of	
  stock	
  
outstanding	
  by	
  the	
  current	
  price	
  of	
  a	
  share.”	
  The	
  basic	
  item	
  took	
  the	
  form:	
  

• We	
  computed	
  the	
  average	
  market	
  capitalization	
  of	
  companies	
  in	
  the	
  USA	
  with	
  a	
  market	
  

capitalization	
  of	
  greater	
  than	
  5	
  billion	
  dollars.	
  Estimate	
  the	
  average	
  market	
  capitalization	
  of	
  
companies	
  in	
  the	
  USA	
  with	
  a	
  market	
  capitalization	
  of	
  greater	
  than	
  5	
  billion	
  dollars:	
  ______	
  

billion	
  dollars	
  

The	
  second	
  and	
  third	
  sentences	
  were	
  then	
  repeated,	
  substituting	
  in	
  the	
  following	
  values:	
  10,	
  15,	
  20,	
  and	
  
25	
  billion	
  dollars.	
  

Item	
  D	
  (stock	
  s):	
  The	
  basic	
  item	
  took	
  the	
  form:	
  

• We	
  computed	
  the	
  average	
  percentage	
  increase	
  in	
  the	
  price	
  of	
  a	
  typical	
  individual	
  U.S.	
  stock	
  on	
  
days	
  when	
  its	
  price	
  increased	
  MORE	
  THAN	
  10%.	
  	
  Estimate	
  the	
  average	
  percentage	
  increase	
  of	
  a	
  

typical	
  individual	
  U.S.	
  stock	
  on	
  days	
  when	
  it	
  increased	
  MORE	
  THAN	
  10%:	
  _______	
  %	
  

The	
  same	
  question	
  was	
  then	
  repeated,	
  substituting	
  in	
  the	
  following	
  percentages:	
  20%,	
  30%,	
  40%,	
  and	
  
50%.	
  	
  

Before	
  data	
  analysis	
  took	
  place,	
  14	
  of	
  the	
  450	
  responses	
  (3.1%)	
  were	
  excluded	
  for	
  being	
  incomplete,	
  
ambiguous	
  or	
  less	
  than	
  the	
  condition	
  given.	
  	
  

Results	
  

Scalable	
  domain	
  items	
  
Item	
  A	
  (height)	
  

Figure	
  AAA	
  plots	
  in	
  the	
  top	
  panel	
  data	
  of	
  the	
  49	
  participants	
  who	
  preferred	
  to	
  respond	
  in	
  feet	
  and	
  

inches,	
  and	
  those	
  of	
  the	
  13	
  participants	
  who	
  preferred	
  to	
  respond	
  in	
  meters	
  in	
  the	
  bottom	
  panel.	
  	
  The	
  
normative	
  lines	
  were	
  generated	
  from	
  a	
  normal	
  distribution	
  of	
  mean	
  69.2	
  inches	
  (175.77	
  cm)	
  and	
  
standard	
  deviation	
  2.85	
  inches	
  (7.24	
  cm),	
  which	
  has	
  an	
  excellent	
  fit	
  to	
  the	
  height	
  of	
  American	
  male	
  

adults	
  (Brainard	
  &	
  Burmaster,	
  1992).	
  In	
  both	
  cases,	
  the	
  data	
  show	
  that	
  average	
  responses	
  get	
  closer	
  to	
  
the	
  boundary	
  in	
  this	
  scalable	
  domain.	
  In	
  the	
  inch	
  data,	
  overestimation	
  of	
  the	
  normative	
  response	
  ranges	
  
from	
  1.70	
  down	
  to	
  .92	
  inches,	
  and	
  in	
  the	
  metric	
  data	
  from	
  5.5	
  down	
  to	
  1.8	
  cm.	
  	
  



	
  

	
  

Figure	
  AAA:	
  Estimates	
  of	
  conditional	
  expectation	
  of	
  height	
  of	
  US	
  men	
  in	
  inches	
  (top	
  panel)	
  and	
  
centimeters	
  (bottom	
  panel).	
  

Item	
  B	
  (life	
  expectancy)	
  

Figure	
  BBB	
  shows	
  average	
  responses	
  for	
  the	
  life	
  expectancy	
  item	
  from	
  155	
  participants.	
  Normative	
  data	
  
were	
  taken	
  from	
  governmental	
  actuarial	
  tables	
  	
  (Bell	
  &	
  Miller,	
  2005,	
  Table	
  6).	
  These	
  data	
  show	
  slight	
  

underestimation	
  ranging	
  from	
  2.29	
  down	
  to	
  .03	
  years.	
  The	
  sample	
  standard	
  error	
  of	
  the	
  mean	
  for	
  the	
  
responses	
  is	
  .19,	
  .18.	
  .20,	
  .13,	
  and	
  .12	
  years	
  for	
  the	
  five	
  categories	
  as	
  they	
  are	
  plotted	
  from	
  left	
  to	
  right.	
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Figure	
  BBB:	
  Estimates	
  of	
  conditional	
  expectation	
  of	
  age	
  at	
  death	
  of	
  US	
  women.	
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Non-­Scalable	
  domain	
  items	
  
Where	
  in	
  the	
  scalable	
  domain	
  items,	
  the	
  normative	
  answers	
  tend	
  towards	
  the	
  boundary,	
  in	
  the	
  non	
  

scalable	
  items	
  below,	
  they	
  tend	
  away	
  from	
  it.	
  Do	
  people	
  pick	
  up	
  this	
  difference?	
  

Item	
  C	
  (market	
  capitalization):	
  
The	
  average	
  responses	
  of	
  the	
  66	
  participants	
  are	
  shown	
  in	
  Figure	
  CCC.	
  Normative	
  data	
  were	
  computed	
  

from	
  US	
  stocks	
  with	
  a	
  market	
  capitalization	
  of	
  greater	
  than	
  5	
  billion	
  dollars	
  on	
  April	
  2,	
  2009.	
  On	
  the	
  
average,	
  there	
  is	
  no	
  appreciation	
  that	
  the	
  conditional	
  expectation	
  departs	
  from	
  the	
  boundary	
  as	
  the	
  
boundary	
  increases.	
  The	
  average	
  responses	
  underestimate	
  the	
  normative	
  estimate	
  from	
  13.2	
  to	
  	
  39.8	
  

billion	
  dollars.	
  Moving	
  from	
  left	
  to	
  right	
  in	
  the	
  chart,	
  the	
  standard	
  error	
  of	
  the	
  responses	
  is	
  
1.12,	
  .83,	
  .64,	
  .96,	
  and	
  1.32	
  billion	
  dollars.	
  

	
  

Item	
  D	
  (stock	
  s):	
  
Figure	
  DDD	
  depicts	
  average	
  responses	
  for	
  153	
  participants.	
  Normative	
  data	
  are	
  computed	
  from	
  using	
  
real	
  data	
  and	
  extrapolating	
  using	
  the	
  power-­‐law	
  tail	
  exponent	
  obtained	
  from	
  the	
  data.	
  As	
  with	
  the	
  

previous	
  items,	
  the	
  average	
  response	
  underestimates	
  the	
  actual	
  situation	
  and	
  fails	
  to	
  move	
  increasingly	
  
far	
  from	
  the	
  boundary.	
  Underestimation	
  ranges	
  from	
  1.52	
  to	
  29.15	
  percentage	
  points.	
  	
  The	
  standard	
  
error	
  of	
  the	
  5	
  responses,	
  as	
  plotted	
  from	
  left	
  to	
  right,	
  are	
  .53,	
  .43,	
  .46,	
  .52,	
  and	
  .68	
  percentage	
  points.	
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Figure	
  DDD:	
  Estimates	
  of	
  conditional	
  expectation	
  of	
  stock	
  price	
  increases.	
  

Averages	
  mask	
  individual	
  differences	
  .	
  We	
  noticed	
  three	
  general	
  trends	
  among	
  a	
  larger	
  variety	
  of	
  
response	
  strategies	
  undertaken	
  by	
  individual	
  participants.	
  	
  In	
  general,	
  responses	
  tend	
  to	
  approach,	
  

depart	
  from,	
  or	
  maintain	
  a	
  constant	
  distance	
  from	
  the	
  boundary	
  as	
  the	
  boundary	
  increases.	
  To	
  classify	
  
individuals	
  objectively,	
  the	
  differences	
  between	
  each	
  participant’s	
  responses	
  and	
  the	
  boundary	
  were	
  fit	
  
by	
  a	
  regression	
  line.	
  The	
  slopes	
  of	
  individual	
  fitting	
  lines	
  are	
  categorized	
  as	
  positive,	
  negative	
  or	
  zero,	
  for	
  

each	
  item	
  in	
  Figure	
  EEE.	
  About	
  80%	
  of	
  participants	
  in	
  the	
  scalable	
  domain	
  items	
  give	
  responses	
  that	
  tend	
  
toward	
  the	
  boundary,	
  as	
  heights	
  and	
  life	
  expectancies	
  actually	
  do.	
  In	
  the	
  non-­‐scalable	
  domain	
  items,	
  
there	
  is	
  a	
  greater	
  variance	
  in	
  strategy	
  adoption,	
  with	
  only	
  52%	
  and	
  36%	
  of	
  participants	
  giving	
  responses	
  

that	
  fall	
  into	
  the	
  normatively	
  correct	
  category.	
  

Finer	
  categories	
  of	
  response	
  categories	
  can	
  be	
  identified.	
  We	
  classified	
  each	
  participants	
  responses	
  to	
  
each	
  item	
  as:	
  increasing,	
  flat,	
  decreasing,	
  u-­‐shaped,	
  inverse-­‐u-­‐shaped,	
  or	
  other.	
  To	
  be	
  classified	
  as	
  
increasing,	
  for	
  instance,	
  the	
  series	
  must	
  increase	
  at	
  least	
  once	
  and	
  never	
  decrease.	
  Using	
  this	
  stricter	
  

criterion,	
  in	
  the	
  scalable	
  domain	
  40%	
  (height)	
  and	
  46%	
  (life	
  expectancy)	
  of	
  participants	
  adopted	
  the	
  
normatively	
  correct	
  (decreasing	
  slope)	
  strategy.	
  However,	
  in	
  the	
  non-­‐scalable	
  domain,	
  only	
  17%	
  (market	
  

capitalization)	
  and	
  20%	
  (stock)	
  of	
  participants	
  gave	
  responses	
  that	
  could	
  be	
  categorized	
  into	
  the	
  correct	
  
(increasing	
  slope)	
  strategy.	
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Figure	
  EEE:	
  Each	
  subplot	
  shows	
  the	
  percentage	
  of	
  participants	
  classified	
  into	
  each	
  strategy.	
  Category	
  
labels	
  refer	
  to	
  the	
  slope	
  of	
  the	
  regression	
  line	
  fitting	
  the	
  differences	
  between	
  each	
  participant’s	
  

responses	
  and	
  the	
  boundary.	
  The	
  normatively	
  correct	
  response	
  categories	
  are	
  plotted	
  in	
  white	
  bars.	
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Black Swans and the Domains of Statistics

Nassim Nicholas Taleb

1. INTRODUCTION

The Black Swan: The Impact of the Highly Improbable (hence
TBS) is only critical of statistics, statisticians, or users of statistics
in a very narrow (but consequential) set of circumstances. It was
written by a veteran practitioner of uncertainty whose profes-
sion (a mixture of quantitative research, derivatives pricing, and
risk management) estimates and deals with exposures to higher
order statistical properties. Derivatives depend on some nonlin-
ear function of random variables (often square or cubes) and are
therefore extremely sensitive to estimation errors of the higher
moments of probability distributions. This is the closest to ap-
plied statistician one can possibly get. Furthermore, TBS notes
the astonishing success of statistics as an engine of scientific
knowledge in (1) some well-charted domains such as measure-
ment errors, gambling theory, thermodynamics, and quantum
mechanics (these fall under the designation of “mild random-
ness”), or (2) some applications in which our vulnerability to er-
rors is small. Indeed, statistics has been very successful in “low
moment” applications such as “significance testing” for prob-
lems based on probability, not expectation or higher moments.
In psychological experiments, for instance, the outlier counts as
a single observation, and does not cause a high impact beyond
its frequency.

TBS is critical of some statistics in the following areas:

1. The unrigorous use of statistics, and reliance on probability
in domains where the current methods can lead us to make conse-
quential mistakes (the “high impact”) where, on logical grounds,
we need to force ourselves to be suspicious of inference about
low probabilities.

2. The psychological effects of statistical numbers in
lowering risk consciousness and the suspension of healthy
skepticism—in spite of the unreliability of the numbers produced
about low-probability events.

3. Finally TBS is critical of the use of commoditized metrics
such as “standard deviation,” “Sharpe ratio,” “mean-variance,”
and so on in fat-tailed domains where these terms have little
practical meaning, and where reliance by the untrained has been
significant, unchecked and, alas, consequential.

Let me summarize the aims of TBS. What one of the review-
ers calls “philosophy” (a term that generally alludes to the ster-
ile character of some of the pursuits in philosophy departments),
owing perhaps to the lack of quantitative measures in TBS, I tend
to call “risk management.” That is, practical wisdom and transla-
tion of knowledge into responsible decision making. Again, for a
practitioner “philosophy” is, literally, “wisdom,” not empty talk.

Nassim Nicholas Taleb is a veteran derivatives trader and researcher,
London Business School and Empirica Laboratory Limited (E-mail:
gamma@fooledbyrandomness.com).

As put directly in TBS, it is about how “not to be a sucker.” My
aim of the book is “how to avoid being the turkey.” It cannot get
more practical (and less “philosophical” in the academic sense)
than that.

Accordingly, TBS is meant to provide a roadmap for dealing
with tail events by exposing areas where our knowledge can be
deemed fragile, and where tail events can have extreme impacts.
It presents methods to avoid such events by not venturing into
areas where our knowledge is not rigorous. In other words, it
offers a way to live safely in a world we do not quite understand.
It does not get into the trap of offering another precise model
to replace another precise model; rather it tells you where we
should have the courage to say “I don’t know,” or “I know less.”

2. CONFIDENCE ABOUT SMALL PROBABILITIES

I will next outline the “inverse problem” of the real world.
Life is not an artificial laboratory in which we are supplied with
probabilities. Nor is it an urn (alas) as in elementary statistics
textbooks. Nor is it a casino where the state authorities monitor
and enforce some probabilistic transparency (i.e., try to eliminate
the uncertainty about the probabilities). Empirical estimation of
probabilities poses a problem in domains with unbounded or
near-unbounded payoffs. (I am not assuming, which is key, that
an upper or lower bound does not exist, only that we do not know
where it is.)

Suppose that you are deriving probabilities of future occur-
rences from the data, assuming (in the “rosy” case) that the past
is representative of the future. An event can be a market crash,
a banking crisis, a loss for an insurance company, a riot, peo-
ple affected in an epidemic, an act of terrorism, and so on. The
severity of the event here will be inversely proportional to its
expected frequency: the so-called 10-year flood will be more
frequent than the 100-year flood, and the 100-year flood will be
more devastating. In these events, we are not sampling from a
problem-style closed urn of known composition and impacts.
We don’t even know if there is a 200-year flood, and what im-
pact it may have. We are now subjected to the classical problem
of induction: making bold claims about the unknown based on
assumed properties of the known. So (1) the smaller the proba-
bility, the larger we need the sample size to be in order to make
inferences, and the smaller the probability, the higher the relative
error in estimating this probability. (2) Yet in these domains, the
smaller the probability, the more consequential the impact of the
absolute probability error on the moments of the distribution.

Estimation errors for tail probabilities are very important when
their large impact is considered. The pair probability times im-
pact is a rectangle that gets thinner as probabilities becomes
smaller, but its area can become more stochastic if the probabil-
ities do not drop too quickly as the impact becomes larger. This
is clearly intractable. It can be solved on paper, of course, by as-
suming a priori a certain class of distributions. Indeed the choice
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of distributions with characteristic scale—that is, what Mandel-
brot defined as “mild randomness,” more on that later—appears
to conveniently push such problems under the rug.

3. SELF-REFERENCE

This problem has been seemingly dealt away with the use
of “off-the-shelf” probability distributions. But distributions are
self-referential. Do we have enough data? If the distribution is,
say, the traditional Gaussian, then yes, we may be able to say that
we have sufficient data—for instance, the Gaussian itself tells us
how much data we need. But if the distribution is not from such
a well-bred family, then we may not have enough data. But how
do we know which distribution we have on our hands? Well,
from the data itself.

So we can state the problem of self-reference of statistical
distributions in the following way. If (1) one needs data to obtain
a probability distribution to gauge knowledge about the future
behavior of the distribution from its past results, and if, at the
same time, (2) one needs a probability distribution to gauge data
sufficiency and whether or not it is predictive outside its sample,
then we are facing a severe regress loop. We do not know what
weight to put on additional data. And unlike many problems of
regress, this one can have severe consequences when we talk
about risk management.

4. NOT ANY FAT TAILS WOULD DO

Although they do not share some aspects of the style of the
message, the four discussants appear to agree with TBS about
the role of outliers and their primacy over the ordinary in deter-
mining the statistical properties. The discussants advocate the
following: robust statistics, stochastic volatility or GARCH, or
Extreme Value Theory. These approaches either do not solve the
problem of confidence about small probability, or they create
new ones: many of these are tools, not solutions. Robust statis-
tics are certainly more natural tools (Goldstein and Taleb 2007),
but I fail to see how robust statistics will produce more informa-
tion about the probability of events that are not in the sample of
the past realizations (see Freedman and Stark 2003). Moreover,
there is a major methodological difference between our stand-
points: I do not believe in using any distribution that naively
produces some extreme event (or calibrates one from past data).
From an operational (and risk management) standpoint, not any
fat tails would do.

The central idea of TBS concerns the all-too-common logical
confusion of absence of evidence with evidence of absence, asso-
ciated with the error of confirmation. It tries to avert this logical
error in the interpretation of statistical information. As it is im-
possible to make precise statements about unseen events, those
that lie outside the sample set, we need to make the richest pos-
sible scenarios about them. For this TBS uses, on both logical
and empirical grounds, the classification made by Mandelbrot
(1963) between two classes of probability distributions: those
that have “true fat tails” and others that do not. I had difficulty
understanding why the statistical literature has neglected for so
long the Mandelbrotian classification.

True fat-tailed distributions have a scale-free or fractal prop-
erty that I can simplify as follows: for X large enough, (i.e., “in
the tails”), P [X > n x]/P [X > x] depends on n, not on x. In
financial securities, say, where X is a monthly return, there is
no reason for P [X > 20%]/P [X > 10%] to be different from
P [X > 15%]/P [X > 7.5%]. This self-similarity at all scales
generates power-law, or Paretian, tails; that is, above a crossover
point, P [X > x] = Kx−α . (Note that the same properties hold
for P [X < x] in the negative domain.)

The standard Poisson and stochastic volatility models are not
scale-invariant. There is a known value of x beyond which these
distributions become thin-tailed—when in reality we do not
know what the upper bound is. Further, the Poisson lends it-
self to in-sample overfitting: you can always use a Poisson jump
to fit, in past samples, the largest realization of a fractal fat-tailed
process. But it would fail out of sample. For instance, before the
23% drop in the stock market crash of 1987, the worst previous
in-sample move was close to 10%. Calibrating a Poisson jump of
10% would not have prepared the risk manager for the ensuing
large drop. On the other hand, for someone using the framework
of Mandelbrot (1963), the crash of 1987 would not have been
surprising—nor would hundreds of large moves we’ve had in
currencies and stocks (TBS presents an overview of the litera-
ture on dozens of empirical tests across socioeconomic random
variables).

Unless there are logical reasons to assume “Mediocristan,” or
mild randomness, TBS advocates using a fractal distribution for
the tails as a default, which is the opposite of what I’ve seen
practiced. Why? There is a logical asymmetry: a true fat-tailed
distribution can camouflage as thin-tailed in small samples; the
opposite is not true. If I see a “20-sigma” event, I can be con-
vinced that the data are not Gaussian. If I see no such deviation
I cannot make statements that the tails are necessarily thin—in
fat-tailed distributions, nothing eventful takes place most of the
time. The burden of proof is not on a fat-tailed distribution.

Decision makers are mostly concerned about the cost of mis-
takes, rather than exact knowledge about the statistical prop-
erties. We are dealing with plenty of invisibles, so I do not use
power-law tails as a way to estimate precise probabilities—since
the parameter α is not easily computed—rather as an aid to make
decisions. How?

First, we use power laws as risk-management tools; they al-
low us to quantify sensitivity to left- and right-tail measurement
errors and rank situations based on the full effect of the unseen.
We can effectively get information about our vulnerability to the
tails by varying the power-law exponent α and looking at the
effect on the moments or the shortfall (expected losses in excess
of some threshold). This is a fully structured stress testing, as
the tail exponent α decreases, all possible states of the world are
encompassed. And skepticism about the tails can lead to action
and allow ranking situations based on the fragility of knowledge;
as these errors are less consequential in some areas than others. I
explain as follows. If your left tail is “organically” truncated (i.e.,
the state of the world is not possible or cannot affect you), then
you may not worry about negative low-probability events and
look forward to positive ones. In a business that benefits from
the rare event (bounded left-tail exposure, unbounded right one),
rare events that the past did not reveal are almost certainly going
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to be good for you. When you look at past biotech revenues,
for example, you do not see the superblockbuster in them, and
owing to the potential for a cure for a disease, there is a small
probability that the sales in that industry may turn out to be far
larger than what was revealed from past data. This is illuminated
by thickening the right tail: varying the α to gauge the effect of
the unseen.

On the other hand, consider businesses negatively exposed to
rare events (bounded right tails). The track record you see is
likely to overestimate the properties—and any thickening of the
left tail lowers your expectation. TBS discusses the 1982 blowup
of banks that lost a century of profits in a single episode: on the
eve of the episode, they appeared to the naïve observer to be
more profitable than they seemed.

The second reason I advocate the “true fat tails” method of
Mandelbrot (1963) in finance and economics is, as I said, empiri-
cal. As we saw with the crash of 1987, events have remained con-
sistent with statistics since then—unlike other methods (Poisson
or stochastic volatility) that failed us out of sample. But methods
allowing for “wild randomness” are not popular in economics
and the disciplines that rely on times series analyses because
they do away with the measure called “variance,” embedded in
the consciousness, and so necessary for many applications.

5. CONCLUSION

To conclude, I am exposing the fragility of knowledge about
the tails of the distributions in domains where errors can be

consequential. I discuss my operational reasons to select scalable
laws, that is, “true fat tails” as default distributions and as tools
to minimize exposure to such consequential errors. It is only in
these cases of lessened tail dependence that statistics are safe—
and that is where its strength lies.

Finally I would like to thank the discussants and The American
Statistician for their open-mindedness and for giving me the
opportunity to explain myself. This makes me extremely proud
to be an applied statistician.
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1. Introduction

How well does options pricing theory really work, and
how dependent is it on the notion of dynamic replication?
In this note we describe what many practitioners know
from long and practical experience: (i) dynamic
replication doesn’t work as well as students are taught
to believe; (ii) most derivatives traders rely on it as little
as possible; and (iii) there is a much simpler way to derive
many option pricing formulas: many of the results of
dynamic option replication can be obtained more
simply, by regarding (as many practitioners do) an
options valuation model as an interpolating formula for
a hybrid security that correctly matches the boundary
values of the ingredient securities that constitute the
hybrid.

2. Replication

The logic of replication is that a security whose payoff
can be replicated purely by the continuous trading of a
portfolio of underlying securities is redundant; its value
can be derived from the value of the underlying
replicating portfolio, requiring no utility function or
risk premium applied to expected values. The fair value
of the replicated security follows purely from riskless
arbitrage arguments.

The method of static replication for valuing securities
was well known, but prior to Black and Scholes (1973) the
possibility of dynamic replication was unexplored,
although there had been hints of the approach, as in
Arrow (1953). What distinguishes the Black–Scholes–
Merton model is the dynamic replication of the portfolio
and the economic consequences of this argument, rather
than, as is frequently asserted in the literature, the option
pricing equation per se.

We shall show that the Black–Scholes option pricing
formula could have been derived much earlier by requir-
ing that a portfolio consisting of a long position in a call
and a short position in a put, valued by the traditional
discounted expected value of their payoffs, must statically
replicate a forward contract.

3. Arguments for skepticism

There are a variety of empirical arguments that justify
some skepticism about the efficacy of dynamic hedging
as a framework for options valuation.

. Options are currently priced and traded on myriads
of instruments—live commodities, agricultural
products, perishable goods, and extremely illiquid
equity securities—where dynamic replication cannot
possibly be achieved. Yet these options are priced
with the same models and software packages as are
options on those rare securities where dynamic
replication is feasible.

. Even where dynamic replication is feasible, the
theory requires continuous trading, a constraint
that is unachievable in practice. The errors resulting
from discrete hedging, as well as the transaction
costs involved, are prohibitive, a point that has
been investigated extensively in the literature (see,
for example, Taleb (1997, 1998)).

. In addition, market-makers, who are in the business
of manufacturing long and short option positions for
their clients, do not hedge every option dynamically;
instead they hedge only their extremely small net
position. Thus, the effect of the difference between
dynamic and static hedging on their portfolio is
extremely small.

. Dynamic replication assumes continuous asset price
movements, but real asset prices can move discon-
tinuously, destroying the possibility of accurate
replication and providing a meaningful likelihood
of bankruptcy for any uncovered option seller who
does not have unlimited capital.*Corresponding author. Email: emanuel.derman@mac.com
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. All manner of exotic and even hybrid multidimen-
sional derivative structures have proliferated in the
past decade, instruments of such complexity that
dynamic replication is clearly practically impossible.
Yet they are priced using extensions of standard
options models.

Hakansson’s so-called paradox (Hakansson 1979, Merton
1992) encapsulates the skepticism about dynamic replica-
tion: if options can only be priced because they can be
replicated, then, since they can be replicated, why are they
needed at all?

4. The logic of dynamic hedging

Let us review the assumptions about dynamic replication
that lead to the Black–Scholes equation for European
options on a single stock.

In the Black–Scholes picture a stock S is a primitive
security, primitive in the sense that its payoff cannot
be replicated by means of some other security. An option
C whose payoff depends through a specified payoff
function of S at some expiration time T is a derivative
security.

Assume that the underlying stock price S undergoes
geometric Brownian motion with expected return � and
return volatility �. A short position in the option C with
price C(S, t) at time t can be hedged by purchasing @C=@S
shares of stock against it.

The hedged portfolio P ¼ �Cþ @C=@S S consisting
of a short position in the option and a long position in D
shares of the underlying stock will have no instantaneous
linear exposure to the stock price S.

Note that the immediate effect of this hedge is to remove
all immediate dependence of the value of portfolio P on
the expected return � of the stock.

E ½�P � ¼ �@C=@SE ½�S � �
1

2
@2C=@S2E ½�S2

�

� @C=@t�tþ @C=@SE ½�S�:

Wey can see how the first and last terms cancel each
other, eliminating E ½�S � from the expectation of the
variations in the hedged portfolio.

The portfolio of option and stock has not yet becomes
a riskless instrument whose return is determined. We need
another element, the stream of subsequent dynamic
hedges.

With continuous rehedging, the instantaneous profit on
the portfolio per unit time is given by

1

2
�2S2 @

2C

@S2
þ
@C

@t
,

assuming for simplicity that the riskless interest rate
is zero.

If the future return volatility � of the stock is known,
this profit is deterministic and riskless. If there is to be no
arbitrage on any riskless position, then the instantaneous
profit must be zero, leading to the canonical
Black–Scholes equation

1

2
�2S2 @

2C

@S2
þ
@C

@t
¼ 0, ð1Þ

which can be solved for boundary conditions correspond-
ing to a simple European call to yield the Black–Scholes
formula.

Note that the Nobel committee upon granting the Bank
of Sweden Prize in honour of Alfred Nobel, provided the
following citation: ‘Black, Merton and Scholes made a
vital contribution by showing that it is in fact not neces-
sary to use any risk premium when valuing an option.
This does not mean that the risk premium disappears;
instead it is already included in the stock price.’z It is
for having removed the effect of � on the value of the
option, and not for rendering the option a deterministic and
riskless security, that their work is cited.

The effect of the subsequent stream of secondary
dynamic hedges is to render the option riskless, not, as
it is often assumed, to remove the risk of the exposure to
the underlying security. The more we hedge, the more the
option becomes (under the Black–Scholes assumptions)
a deterministic payoff—but, again, under a set of very
precise and idealized assumptions, as we will see next.

5. Dynamic hedging and its discontents

The Black–Scholes–Merton formalism relies upon the
following central assumptions:

(1) constant (and known) �;
(2) constant and known carry rates;
(3) no transaction costs;
(4) frictionless (and continuous) markets.

Actual markets violate all of these assumptions.

. Most strikingly, the implied volatility smile is
incompatible with the Black–Scholes–Merton
model, which leads to a flat implied volatility
surface. Since the option price is incompatible
with the Black–Scholes formula, the correct
hedge ratio is unknown.

. One cannot hedge continuously. Discrete
hedging causes the portfolio P to become risky
before the next rebalancing. One can think of
this as a sampling error of order 1=ð

p
2N Þ in the

stock’s volatility, where N is the number of
rebalancings. Hedge 50 times on a three-
month option rather than continuously, and
the standard deviation of the error in the repli-
cated option price is about 10%, a significant
mismatch.

yWe are taking the equality in expectation because we are operating in discrete time not at the limit of �t going to 0.
zSee www.Nobel.se
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. In addition to the impossibility of continuous
hedging, transaction costs at each discrete
rehedging impose a cost that make an options
position worth less than the Black–Scholes value.

. Future carry rates are neither constant nor known.

. Furthermore, future volatility is neither constant
nor known.

. More radically, asset price distributions have
fat tails and are inadequately described by the geo-
metric Brownian motion assumed by Markowitz’s
mean-variance theory, the Capital Asset Pricing
Model and options theory itself.

Furthermore, practitioners know from bitter experience
that dynamic replication is a much more fragile procedure
than static replication: a trading desk must deal with
transactions costs, liquidity constraints, the need for
choosing price evolution models and the uncertainties
that ensue, the confounding effect of discontinuous
asset price moves, and, last but by no means least,
the necessity for position and risk management software.

6. Options valuation by expectations and

static replication

Practitioners in derivatives markets tend to regard
options models as interpolating formulas for hybrid
securities. A convertible bond, for example, is part
stock, part bond: it becomes indistinguishable from the
underlying stock when the stock price is sufficiently high,
and equivalent to a corporate bond when the stock price
is sufficiently low. A convertible bond valuation model
provides a formula for smoothly interpolating between
these two extremes. In order to provide the correct limits
at the extremes, the model must be calibrated by static
replication. A convertible model that doesn’t replicate a
simple corporate bond at asymptotically low stock prices
is fatally suspect.

One can view the Black–Scholes formula in a similar
light. Assume that a stock S that pays no dividends
has future returns that are lognormal with volatility �.
A plausible and time-honoured actuarial way to estimate
the value at time t of a European call C with strike K
expiring at time T is to calculate its expected discounted
value, which is given by

CðS, tÞ ¼ e�rðT�tÞðE ½S� K �þÞ

¼ e�rðT�tÞ S e�ðT�tÞNðd1Þ � KNðd2Þ
n o

, ð2Þ

where r is the appropriate but unknown discount rate,
still unspecified and � is the unknown expected growth
rate for the stock.

The analogous actuarial formula for a put P is given by

PðS, tÞ ¼ e�rðT�tÞðE ½K� S �þÞ

¼ e�rðT�tÞ KNð�d2Þ � Se�ðT�tÞNð�d1Þ
n o

, ð3Þ

where

d1, 2 ¼
ln½S e�ðT�tÞ=K � � ½�2ðT� tÞ=2�

�
ffiffiffiffiffiffiffiffiffiffiffi
T� t
p : ð4Þ

A dealer or market-maker in options, however, has addi-
tional consistency constraints. As a manufacturer rather
than a consumer of options, the market-maker must stay
consistent with the value of his raw supplies. He must
notice that a portfolio F ¼ C� P consisting of a long
position in a call and a short position in a put with the
same strike K has exactly the same payoff as a forward
contract with expiration time T and delivery price K
whose fair current value is

F ¼ S� K e�RðT�tÞ, ð5Þ

where R is the zero-coupon riskless discount rate for the
time to expiration.

The individual formulas of equations (2) and (3) must
be calibrated to be consistent with equation (5). If they
are not, the market-maker will be valuing his options,
stock and forward contracts inconsistently, despite their
underlying similarity. What conditions are necessary to
satisfy this?

Combining equations (2) and (3) we obtain

F ¼ C� P ¼ e�rðT�tÞ S e�ðT�tÞ � K
n o

: ð6Þ

The requirement that equations (5) and (6) be consistent
dictates that both the appropriate discount rate r and
the expected growth rate � for the stock in the
options formula be the zero-coupon discount rate R.
These choices make equation (2) equivalent to the
Black–Scholes formula.

A similar consistency argument can be used to
derive the values of more complex derivatives, dependent
on a larger number of underlyers, by requiring
consistency with the values of all tradable forwards
contracts on those underlyers. For an application
of this method to valuing quanto options, see
Derman et al. (1998).

7. From Bachelier to Keynes

Let us zoom back into the past. Assume that in 1973,
there were puts and calls trading in the market-place.
The simple put–call parity argument would have
revealed that these can be combined to create a forward
contract.

John Maynard Keynes was the first to show that
the forward need not be priced by the expected return
on the stock, the equivalent of the � we discussed earlier,
but by the arbitrage differential, namely, the equivalent of
r� d. This follows the exposition of the formula that was
familiar to every institutional foreign exchange trader.

If by lending dollars in New York for one month the
lender could earn interest at the rate of 5 1

2% per
annum, whereas by lending sterling in London for
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one month he could only earn interest at the rate of
4%, then the preference observed above for holding
funds in New York rather than in London is wholly
explained. That is to say, forward quotations for the
purchase of the currency of the dearer money
market tend to be cheaper than spot quotations
by a percentage per month equal to the excess
of the interest which can be earned in a month in
the dearer market over what can be earned in the
cheaper. Keynes (1923, 2000)

Between Bachelier and Black–Scholes, there were several
researchers who produced formulas similar to that of
Black–Scholes, differing from it only by their use of a
discount rate that was not riskless. While Bachelier had
the Black–Scholes equation with no drift and under an
arithmetic Brownian motion, others added the drift,
albeit a nonarbitrage derived one, in addition to the
geometric motion for the dynamics. Of these equations
we can cite Sprenkle (1961), Boness (1964), Samuelson
(1965), and Samuelson and Merton (1969). All of their
resultant pricing equations involved unknown risk
premiums that would have been determined to be zero
had they used the put–call replication argument
we illustrated above. Furthermore, the put–call parity
constraint was already present in the literature (see
Stoll, 1969).

8. Conclusion

Dynamic hedging is neither strictly required nor strictly
necessary for plausibly valuing options; it is less relied
upon in practice than is commonly believed. Much of
financial valuation does not require such complexity of
exposition, elegant though it may bey. The formulas
it leads to can often be obtained much more simply and
intuitively by constrained interpolation. Finally, the
pricing of contingent claims by interpolation and static
replication opens the door to valuing options on assets
without necessarily demanding that such assets have
finite square variation, and thus sets the grounds for

the use of a richer class of distributions with finite first
moment.
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Abstract: Options traders use a pricing formula which they adapt by fudging 
and changing the tails and skewness by varying one parameter, the standard 
deviation of a Gaussian. Such formula is popularly called “Black-Scholes-Merton” 
owing to an attributed eponymous discovery (though changing the standard 
deviation parameter is in contradiction with it). However we have historical 
evidence that 1) the said Black, Scholes and Merton did not invent any formula, 
just found an argument to make a well known (and used) formula compatible 
with the economics establishment, by removing the “risk” parameter through 
“dynamic hedging”, 2) Option traders use (and evidently have used since 1902) 
sophisticated heuristics and tricks more compatible with the previous versions of 
the formula of Louis Bachelier and Edward O. Thorp (that allow a broad choice of 
probability distributions) and removed the risk parameter by using put-call parity. 
3) Option traders did not use the Black-Scholes-Merton formula or similar 
formulas after 1973 but continued their bottom-up heuristics more robust to the 
high impact rare event. The paper draws on historical trading methods and 19th 
and early 20th century references ignored by the finance literature. It is time to 
stop using the wrong designation for option pricing. 

 

 

                                                   
1 We thank Russ Arbuthnot, John (Barkley) Rosser, and others for useful comments. 



BREAKING THE CHAIN OF TRANSMISSION 

For us practitioners, theories about practice should 
arise from practice2 or at least avoid conflict with it. 
This explains our concern with the “scientific” notion 
that practice should fit theory. Option hedging, pricing, 
and trading are neither philosophy nor mathematics. 
but an extremely rich craft rich with heuristics with 
traders learning from traders (or traders copying other 
traders) and tricks developing under evolution 
pressures, in a bottom-up manner. It is technë, not 
ëpistemë. Had it been a science it would not have 
survived – for the empirical and scientific fitness of the 
pricing and hedging theories offered are, we will see, at 
best, defective and unscientific (and, at the worst, the 
hedging methods create more risks than they reduce). 
Our approach in this paper is to ferret out historical 
evidence of technë showing how option traders went 
about their business in the past. 

Options, we will show, have been extremely active in 
the pre-modern finance world. Complicated, tacitly 
transmitted tricks and heuristically derived 
methodologies in option trading and risk management 
of derivatives books have been developed over the past 
century, and used quite effectively by operators. In 
parallel, many derivations were produced by 
mathematical researchers3. The economics literature, 
however, did not recognize these contributions, 
substituting the rediscoveries or subsequent 
reformulations done by (some) economists. There is 
evidence of an attribution problem with Black-Scholes-
Merton option “formula”, which was developed, used, 
and adapted in a robust way by a long tradition of 
researchers and used heuristically by option market 
makers and "book runners". Furthermore, in a case of 
scientific puzzle, the exact formula called “Black-Sholes-
Merton” was written down (and used) by Edward Thorp 
which, paradoxically, while being robust and realistic, 
has been considered unrigorous. This raises the 
following: 1) The Black-Scholes-Merton was, according 
to modern finance, just a neoclassical finance 
argument, no more than a thought experiment4, 2) We 
are not aware of traders using their argument or their 
version of the formula. 

                                                   
2 For us, in this discussion, a practitioner is deemed to be 

someone involved in repeated decisions about option hedging, 
not a support quant who writes pricing software or an 
academic who provides “consulting” advice. 

3 Heuristics as tacit knowledge: Gigerenzer et al. (2000). 
4 Here we question the notion of confusing thought 

experiments in a hypothetical world, of no predictive power, 
with either science or practice. The fact that the Black-Scholes-
Merton argument works in a Platonic world and appears to be 
“elegant” does not mean anything since one can always 
produce a Platonic world in which a certain equation works, or 
in which a “rigorous” proof can be provided, a process called 
reverse-engineering.  

THE BLACK-SCHOLES-MERTON “FORMULA” WAS AN 
ARGUMENT 

Option traders call the formula they use the “Black-
Scholes-Merton” formula without being aware that  by 
some irony, of all the possible options formulas that 
have been produced in the past century,  what is called 
the Black-Scholes-Merton “formula” (after Black and 
Scholes, 1973, and Merton, 1973) is the one the 
furthest away from what they are using. In fact of the 
formulas written down in a long history it is the only 
formula that is fragile to jumps and tail events. 

First, something seems to have been lost in translation: 
Black and Scholes (1973) and Merton (1973) actually 
never came up with a new option formula, but only an 
theoretical economic argument built on a new way of 
“deriving”, rather re-deriving, an already existing –and 
well known –formula. The argument, we will see, is 
extremely fragile to assumptions. The foundations of 
option hedging and pricing were already far more firmly 
laid down before them. The Black-Scholes-Merton  
argument, simply, is that an option can be hedged 
using a certain methodology called “dynamic hedging” 
and then turned into a risk-free instrument, as the 
portfolio would no longer be stochastic. Indeed what 
Black, Scholes and Merton did was “marketing”, finding 
a way to make a well-known formula palatable to the 
economics establishment of the time, little else, and in 
fact distorting its essence. 

Such argument requires strange far-fetched 
assumptions: some liquidity at the level of transactions, 
knowledge of the probabilities of future events (in a 
neoclassical Arrow-Debreu style)5, and, more critically, 
a certain mathematical structure that requires “thin-
tails”, or mild randomness, on which, later. The entire 
argument is indeed, quite strange and rather 
inapplicable for someone clinically and observation-
driven standing outside conventional neoclassical 
economics. Simply, the dynamic hedging argument is 
dangerous in practice as it subjects you to blowups; it 
makes no sense unless you are concerned with 
neoclassical economic theory. The Black-Scholes-
Merton argument and equation flow a top-down 
general equilibrium theory, built upon the assumptions 
of operators working in full knowledge of the probability 
distribution of future outcomes –in addition to a 
collection of assumptions that, we will see, are highly 
invalid mathematically, the main one being the ability to 
cut the risks using continuous trading which only works 

                                                   
5 Of all the misplaced assumptions of Black Scholes that 

cause it to be a mere thought experiment, though an extremely 
elegant one, a flaw shared with modern portfolio theory, is the 
certain knowledge of future delivered variance for the random 
variable (or, equivalently, all the future probabilities). This is 
what makes it clash with practice –the rectification by the 
market fattening the tails is a negation of the Black-Scholes 
thought experiment.  
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in the very narrowly special case of thin-tailed 
distributions (or, possibly, jumps of a well-known 
structure). But it is not just these flaws that make it 
inapplicable: option traders do not “buy theories”, 
particularly speculative general equilibrium ones, which 
they find too risky for them and extremely lacking in 
standards of reliability. A normative theory is, simply, 
not good for decision-making under uncertainty 
(particularly if it is in chronic disagreement with 
empirical evidence). Operators may take decisions 
based on heuristics under the impression of using 
speculative theories, but avoid the fragility of theories 
in running their risks. 

Yet professional traders, including, initially, the authors 
(and, alas, the Swedish Academy of Science) have 
operated under the illusion that it was the Black-
Scholes-Merton “formula” they actually used –we were 
told so. This myth has been progressively reinforced in 
the literature and in business schools, as the original 
sources have been lost or frowned upon as “anecdotal” 
(Merton, 1992). 

 

Figure 1 The typical "risk reduction" performed 
by the Black-Scholes-Merton argument. These 
are the variations of a dynamically hedged 
portfolio. BSM indeed "smoothes" out risks but 
exposes the operator to massive tail events –
reminiscent of such blowups as LTCM. Other 
option formulas are robust to the rare event and 
make no such claims. 

 

This discussion will present our real-world, ecological 
understanding of option pricing and hedging based on 
what option traders actually do and did for more than a 
hundred years.  

This is a very general problem. As we said, option 
traders develop a chain of transmission of technë, like 
many professions. But the problem is that the “chain” is 
often broken as universities do not store the acquired 
skills by operators. Effectively plenty of robust 
heuristically derived implementations have been 
developed over the years, but the economics 
establishment has refused to quote them or 
acknowledge them. This makes traders need to relearn 

matters periodically. Failure of dynamic hedging in 
1987, by such firm as Leland O’Brien Rubinstein, for 
instance, does not seem to appear in the academic 
literature published after the event6 (Merton, 1992, 
Rubinstein, 1998, Ross, 2005); to the contrary dynamic 
hedging is held to be a standard operation. 

There are central elements of the real world that can 
escape them –academic research without feedback 
from practice (in a practical and applied field) can cause 
the diversions we witness between laboratory and 
ecological frameworks.  This explains why some many 
finance academics have had the tendency to make 
smooth returns, then "blow up"(that, is experience a 
terminal or near-terminal sharp loss) using their own 
theories7. We started the other way around, first by 
years of option trading doing million of hedges and 
thousands of option trades. This in combination with 
investigating the forgotten and ignored ancient 
knowledge in option pricing and trading we will explain 
some common myths about option pricing and hedging. 

There are indeed two myths: 

• That we had to wait for the Black-Scholes-
Merton options formula to trade the product, 
price options, and manage option books. In 
fact the introduction of the Black, Scholes and 
Merton  argument increased our risks and set 
us back in risk management. More generally, it 
is a myth that traders rely on theories, even 
less a general equilibrium theory, to price 
options. 

• That we “use” the Black-Scholes-Merton 
options “pricing formula”. We, simply don’t. 

In our discussion of these myths we will focus on the 
bottom-up literature on option theory that has been 
hidden in the dark recesses of libraries.  And that 
addresses only recorded matters –not the actual 
practice of option trading that has been lost. 

MYTH 1: PEOPLE DID NOT PROPERLY “PRICE” OPTIONS 
BEFORE THE BLACK-SCHOLES-MERTON THEORY 

It is assumed that the Black-Scholes-Merton theory is 
what made it possible for option traders to calculate 
their delta hedge (against the underlying) and to price 

                                                   
6 For instance –how mistakes never resurface into the 

consciousness, Mark Rubinstein was awarded in 1995 the 
Financial Engineer of the Year award by the International 
Association of Financial Engineers. There was no mention of 
portfolio insurance and the failure of dynamic hedging. 

7 For a standard reaction to a rare event, see the following:  
"Wednesday is the type of day people will remember in quant-
land for a very long time," said Mr. Rothman, a University of 
Chicago Ph.D. who ran a quantitative fund before joining 
Lehman Brothers. "Events that models only predicted would 
happen once in 10,000 years happened every day for three 
days." One 'Quant' Sees Shakeout For the Ages -- '10,000 
Years' By Kaja Whitehouse, August 11, 2007; Page B3. 
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options. This argument is highly debatable, both 
historically and analytically. 

Options were actively trading at least already in 1600 
as described by Joseph De La Vega (1688) –implying 
some form of technë, a heuristic method to price them 
and deal with their exposure. De La Vega describes 
option trading in the Netherlands, indicating that 
operators had some expertise in option pricing and 
hedging. He diffusely points to the put-call parity, and 
his book was not even meant to teach people about the 
technicalities in option trading. De Pinto (1771) even 
more explicitly points out how to convert call options 
into put options 8. Our insistence on the use of Put-Call 
parity is critical for the following reason: The Black-
Scholes-Merton’s claim to fame is removing the 
necessity of a risk-based drift from the underlying 
security –to make the trade “risk-neutral”. But one does 
not need dynamic hedging for that: simple put-call 
parity can suffice (Derman and Taleb, 2005), as we will 
discuss later. And it is this central removal of the “risk-
premium” that apparently was behind the decision by 
the Nobel committee to grant Merton and Scholes the 
(then called) Bank of Sweden Prize in Honor of Alfred 
Nobel: “Black, Merton and Scholes made a vital 
contribution by showing that it is in fact not necessary 
to use any risk premium when valuing an option. This 
does not mean that the risk premium disappears; 
instead it is already included in the stock price.”9 It is 
for having removed the effect of the drift on the value 
of the option, using a thought experiment, that their 
work was originally cited, something that was 
mechanically present by any form of trading and 
converting using far simpler techniques. 

Options have a much richer history than shown in the 
conventional literature. Forward contracts seems to 
date all the way back to Mesopotamian clay tablets 
dating all the way back to 1750 B.C. Gelderblom and  
Jonker (2005) show that Amsterdam grain dealers had 
already used options and forwards in 1550 (but 
Amsterdam is not the earliest, as even more sources 
document even earlier uses in Europe10).  

In the late 1800 and the early 1900 there were active 
option markets in London and New York as well as in 
Paris and several other European exchanges. Markets it 
seems, were active and extremely sophisticated option 
markets in 1870. Kairys and Valerio (1997) discuss the 
market for equity options in USA in the 1870s, indirectly 
showing that traders were sophisticated enough to 
price for tail events11. In a recent paper Mixon (2009) 

                                                   
8 See Poitras (2009). 
9 See www.Nobel.se  
10 See Bell, Brooks, and Dryburgh,  (2007) —we thank 

Barkley Rosser for ferreting out earlier uses. 
11 The historical description of the market is informative 

until Kairys and Valerio try to gauge whether options in the 
1870s were underpriced or overpriced (using Black-Scholes-
Merton style methods). There was one tail-event in this period, 
the great panic of September 1873. Kairys and Valerio find that 

looks at option pricing in the past versus the present 
and concludes that: 

“Traders in the nineteenth century appear to have 
priced options the same way that twenty-first century 
traders price options. Empirical regularities relating 
implied volatility to realized volatility, stock prices, and 
other implied volatilities (including the volatility skew), 
are qualitatively the same in both eras.”  

 
There was even active option arbitrage trading taking 
place between some of these markets. There is a long 
list of missing treatises on option trading: we traced at 
least ten German treatises on options written between 
the late 1800s and the hyperinflation episode12.  
 

Mixon (2009) describes a relatively active Foreign 
Exchange Option Market from 1917 to 1921. The 
currency option market at that time evolved from one 
involving relatively large sums of money per transaction 
to one focused on tiny retail transactions.	
  

When Cyrus Field finally succeeded in joining Europe 
and America by cable in 1866, intercontinental 
arbitrage was made possible. Although American 
securities had been purchased in considerable volume 
abroad after 1800, the lack of quick communication 
placed a definite limit on the amount of active trading 
in securities between London and New York markets, 

                                                                               
holding puts was profitable, but deem that the market panic 
was just a one-time event :  

“However, the put contracts benefit from the “financial 
panic” that hit the market in September, 1873. Viewing 
this as a “one-time” event, we repeat the analysis for puts 
excluding any unexpired contracts written before the stock 
market panic.” 

Using references to  the economic literature that also conclude 
that options in general were overpriced in the 1950s 1960s and 
1970s they conclude:  "Our analysis shows that option 
contracts were generally overpriced and were unattractive for 
retail investors to purchase”. They add: ”Empirically we find 
that both put and call options were regularly overpriced 
relative to a theoretical valuation model." 

These results are contradicted by the practitioner Nelson 
(1904): “…the majority of the great option dealers who have 
found by experience that it is the givers, and not the takers, of 
option money who have gained the advantage in the long run”. 

12 Here is a partial list: 
Bielschowsky, R (1892):  Ueber die rechtliche Natur der 

Prämiengeschäfte, Bresl. Genoss.-Buchdr  
Granichstaedten-Czerva, R (1917): Die Prämiengeschäfte 

an der Wiener Börse, Frankfurt am Main 
Holz, L. (1905)  Die Prämiengeschäfte, Thesis (doctoral)--

Universität Rostock 
Kitzing, C. (1925): Prämiengeschäfte : Vorprämien-, 

Rückprämien-, Stellagen- u. Nochgeschäfte ; Die solidesten 
Spekulationsgeschäfte mit Versicherg auf Kursverlust, Berlin 

Leser, E, (1875): Zur Geschichte der Prämiengeschäfte 
Szkolny, I. (1883): Theorie und praxis der 

prämiengeschäfte nach einer originalen methode dargestellt., 
Frankfurt am Main 

Author Unknown (1925): Das Wesen der 
Prämiengeschäfte, Berlin : Eugen Bab & Co., Bankgeschäft 
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(see Weinstein,  1931). Furthermore, one extant 
source, Nelson (1904), speaks volumes: An option 
trader and arbitrageur, S.A. Nelson published a book 
“The A B C of Options and Arbitrage” based on his 
observations around the turn of the twentieth century. 
According to Nelson (1904) up to 500 messages per 
hour and typically 2000 to 3000 messages per day were 
sent between the London and the New York market 
through the cable companies. Each message was 
transmitted over the wire system in less than a minute. 
In a heuristic method that was repeated in Dynamic 
Hedging by one of the authors, (Taleb,1997), Nelson, 
describe in a theory-free way many rigorously clinical 
aspects of his arbitrage business: the cost of shipping 
shares, the cost of insuring shares, interest expenses, 
the possibilities to switch shares directly between 
someone being long securities in New York and short in 
London and in this way saving shipping and insurance 
costs, as well as many more tricks etc. 

The formal financial economics canon does not include 
historical sources from outside economics, a mechanism 
discussed in Taleb (2007a). The put-call parity was 
according to the formal option literature first fully 
described by Stoll (1969), but neither he nor others in 
the field even mention Nelson. Not only was the put-
call parity argument fully understood and described in 
detail by Nelson (1904), but he, in turn, makes frequent 
reference to Higgins (1902). Just as an example Nelson 
(1904) referring to Higgins (1902) writes: 

“It may be worthy of remark that ‘calls’ are more 
often dealt than ‘puts’ the reason probably being 
that the majority of ‘punters’ in stocks and shares 
are more inclined to look at the bright side of things, 
and therefore more often ‘see’ a rise than a fall in 
prices.  

This special inclination to buy ‘calls’ and to leave the 
‘puts’ severely alone does not, however, tend to 
make ‘calls’ dear and ‘puts’ cheap, for it can be 
shown that the adroit dealer in options can convert 
a ‘put’ into a ‘call,’ a ‘call’ into a ‘put’, a ‘call o’ more’ 
into a ‘put- and-call,’ in fact any option into another, 
by dealing against it in the stock. We may therefore 
assume, with tolerable accuracy, that the ‘call’ of a 
stock at any moment costs the same as the ‘put’ of 
that stock, and half as much as the Put-and-Call.”  

The Put-and-Call was simply a put plus a call with the 
same strike and maturity, what we today would call a 
straddle. Nelson describes the put-call parity over many 
pages in full detail. Static market neutral delta hedging 
was also known at that time, in his book Nelson for 
example writes:  

“Sellers of options in London as a result of long 
experience, if they sell a Call, straightway buy half 
the stock against which the Call is sold; or if a Put is 
sold; they sell half the stock immediately.” 

We must interpret the value of this statement in the 
light that standard options in London at that time were 
issued at-the-money (as explicitly pointed out by 

Nelson); furthermore, all standard options in London 
were European style. In London in- or out-of-the-
money options were only traded occasionally and were 
known as “fancy options”. It is quite clear from this and 
the rest of Nelson’s book that the option dealers were 
well aware that the delta for at-the-money options was 
approximately 50%. As a matter of fact, at-the-money 
options trading in London at that time were adjusted to 
be struck to be at-the-money forward, in order to make 
puts and calls of the same price. We know today that 
options that are at-the-money forward and do not have 
very long time to maturity have a delta very close to 
50% (naturally minus 50% for puts). The options in 
London at that time typically had one month to 
maturity when issued. 

Nelson also diffusely points to dynamic delta hedging, 
and that it worked better in theory than practice (see 
Haug, 2007). It is clear from all the details described by 
Nelson that options in the early 1900 traded actively 
and that option traders at that time in no way felt 
helpless in either pricing or in hedging them.  

Herbert Filer was another option trader that was 
involved in option trading from 1919 to the 1960s. 
Filer(1959) describes what must be considered a 
reasonable active option market in New York and 
Europe in the early 1920s and 1930s. Filer mentions 
however that due to World War II there was no trading 
on the European Exchanges, for they were closed. 
Further, he mentions that London option trading did not 
resume before 1958. In the early 1900’s, option traders 
in London were considered to be the most 
sophisticated, according to Nelson. It could well be that 
World War II and the subsequent shutdown of option 
trading for many years was the reason known robust 
arbitrage principles about options were forgotten and 
almost lost, to be partly re-discovered by finance 
professors such as Stoll (1969). 

The put-call parity in the older literature seems to serve 
two main purposes: 

1. As a pure arbitrage constrain, 

2. but also as a tool to create calls out of puts, puts out 
of calls and straddles out of calls or puts for the 
purpose of hedging options with options. In other 
words more than simply arbitrage constrain, but a very 
important tool to transfer risk in optimal and robust 
way between options even in cases when no theoretical 
arbitrage opportunities between put and call options 
existed. 

The original descriptions and uses of the put-call parity 
concept, unlike later theories, considers that supply and 
demand for options will affect option prices. Even if the 
Black, Scholes, Merton model in strict theoretical sense 
is fully consistent with the arbitrage constrain of the 
put-call parity, the model is actually not consistent with 
the original invention and use of the put-call parity. 
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In 1908, Vinzenz Bronzin published a book deriving 
several option pricing formulas, and a formula very 
similar to what today is known as the Black-Scholes-
Merton formula, see also Hafner and Zimmermann 
(2007, 2009). Bronzin based his risk-neutral option 
valuation on robust arbitrage principles such as the put-
call parity and the link between the forward price and 
call and put options –in a way that was rediscovered by 
Derman and Taleb (2005)13. Indeed, the put-call parity 
restriction is sufficient to remove the need to 
incorporate a future return in the underlying security –it 
forces the lining up of options to the forward price14. 

Again, in 1910 Henry Deutsch describes put-call parity 
but in less detail than Higgins and Nelson. In 1961 
Reinach again described the put-call parity in quite 
some detail (another text typically ignored by 
academics). Traders at New York stock exchange 
specializing in using the put-call parity to convert puts 
into calls or calls into puts was at that time known as 
Converters. Reinach (1961): 

“Although I have no figures to substantiate my 
claim, I estimate that over 60 per cent of all Calls 
are made possible by the existence of Converters.” 

In other words the converters (dealers) who basically 
operated as market makers were able to operate and 
hedge most of their risk by “statically” hedging options 
with options. Reinach wrote that he was an option 
trader (Converter) and gave examples on how he and 
his colleagues tended to hedge and arbitrage options 
against options by taking advantage of options 
embedded in convertible bonds:  

“Writers and traders have figured out other procedures 
for making profits writing Puts & Calls. Most are too 
specialized for all but the seasoned professional. One 
such procedure is the ownership of a convertible bond 
and then writing of Calls against the stock into which 
the bonds are convertible. If the stock is called 
converted and the stock is delivered.”  

Higgins, Nelson and Reinach all describe the great 
importance of the put-call parity and to hedge options 
                                                   

13 The argument of Derman and Taleb (2005) was present 
in Taleb (1997) but remained unnoticed. 

14 Ruffino and Treussard (2006) accept that one could 
have solved the risk-premium by happenstance, not realizing 
that put-call parity was so extensively used in history.  But they 
find it insufficient. Indeed the argument may not be sufficient 
for someone who subsequently complicated the representation 
of the world with some implements of modern finance such as 
“stochastic discount rates” –while simplifying it at the same 
time to make it limited to the Gaussian and allowing dynamic 
hedging. They write that “the use of a non-stochastic discount 
rate common to both the call and the put options is 
inconsistent with modern equilibrium capital asset pricing 
theory.” Given that we have never seen a practitioner use 
“stochastic discount rate”, we, like our option trading 
predecessors, feel that put-call parity is sufficient & does the 
job. 

The situation is akin to that of scientists lecturing birds on 
how to fly, and taking credit for their subsequent performance 
–except that here it would be lecturing them the wrong way. 

with options. Option traders were in no way helpless in 
hedging or pricing before the Black-Scholes-Merton 
formula. Based on simple arbitrage principles they were 
able to hedge options more robustly than with Black- 
Scholes-Merton. As already mentioned static market-
neutral delta hedging was described by Higgins and 
Nelson in 1902 and 1904.  Also, W. D. Gann (1937) 
discusses market neutral delta hedging for at-the-
money options, but in much less details than Nelson 
(1904). Gann also indicates some forms of auxiliary 
dynamic hedging. 

Mills (1927) illustrates how jumps and fat tails were 
present in the literature in the pre-Modern Portfolio 
Theory days. He writes: ”A distribution may depart 
widely from the Gaussian type because the influence of 
one or two extreme price changes.” 

Option Formulas and Delta Hedging 

Which brings us to option pricing formulas. The first 
identifiable one was Bachelier (1900). Sprenkle (1961) 
extended Bacheliers work to assume lognormal rather 
than normal distributed asset price. It also avoids 
discounting (to no significant effect since many 
markets, particularly the U.S., option premia were paid 
at expiration).  

A. James Boness (1964) also assumed a lognormal 
asset price.  He derives a  formula for the price of a call 
option that  is actually identical to the Black-Scholes-
Merton 1973 formula, but the way Black, Scholes and 
Merton derived their formula based on continuous 
dynamic delta hedging or alternatively based on CAPM 
they were able to get independent of the expected rate 
of return. It is in other words not the formula itself that 
is considered the great discovery done by Black, 
Scholes and Merton, but how they derived it. This is 
among several others also pointed out by Rubinstein 
(2006):  

“The real significance of the formula to the financial 
theory of investment lies not in itself, but rather in 
how it was derived. Ten years earlier the same formula 
had been derived by Case M. Sprenkle (1961) and A. 
James Boness (1964).” 

Samuelson (1965) and Thorp (1969) published 
somewhat similar option pricing formulas to Boness and 
Sprenkle. Thorp (2007) claims that he actually had an 
identical formula to the Black-Scholes-Merton formula 
programmed into his computer years before Black, 
Scholes and Merton published their theory. 

It is also worth to mention that McKean (1965) derives 
a formula for perpetual American put option, but 
without assuming continuous delta hedging. The 
formula was later modified by Merton (1973) to assume 
risk neutrality based on continuous dynamic hedging.  

Now, delta hedging. As already mentioned static 
market-neutral delta hedging was clearly described by 
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Higgins and Nelson 1902 and 1904. Thorp and Kassouf 
(1967) presented market neutral static delta hedging in 
more details, not only for at-the-money options, but for 
options with any delta. In his 1969 paper Thorp is 
shortly describing market neutral static delta hedging, 
also briefly pointed in the direction of some dynamic 
delta hedging, not as a central pricing device, but a 
risk-management tool. Filer also points to dynamic 
hedging of options, but without showing much 
knowledge about how to calculate the delta. Another 
“ignored” and “forgotten” text is a book/booklet 
published in 1970 by Arnold Bernhard & Co. The 
authors are clearly aware of market neutral static delta 
hedging or what they name “balanced hedge” for any 
level in the strike or asset price. This book has multiple 
examples of how to buy warrants or convertible bonds 
and construct a market neutral delta hedge by shorting 
the right amount of common shares. Arnold Bernhard & 
Co also published deltas for a large number of warrants 
and convertible bonds that they distributed to investors 
on Wall Street. 

Referring to Thorp and Kassouf (1967), Black, Scholes 
and Merton took the idea of delta hedging one step 
further, Black and Scholes (1973):  

“If the hedge is maintained continuously, then the 
approximations mentioned above become exact, and 
the return on the hedged position is completely 
independent of the change in the value of the stock. In 
fact, the return on the hedged position becomes 
certain. This was pointed out to us by Robert Merton.”  

This may be a brilliant mathematical idea, but option 
trading is not mathematical theory. It is not enough to 
have a theoretical idea so far removed from reality that 
is far from robust in practice. What is surprising is that 
the only principle option traders do not use and cannot 
use is the approach named after the formula, which is a 
point we soon will discuss.   

Just after Black, Scholes and Merton published their 
papers, Thorp (1973) showed how there not could be 
risk-neutrality as soon as one moved away from 
continuous delta hedging. And given that continuous 
delta hedging was obviously impossible in practice, the 
paper showed how a similar option formula derived 
under discrete time delta hedging in the limit (of 
continuous hedging) was equivalent with the Black, 
Scholes, Merton model. However his point was that the 
continuous time delta hedging of the formula not was 
correct simply because continuous hedging is 
impossible and also is very non-robust. Thorp did this 
to verify for himself that their derivation which led to 
the formula that according to himself had been using in 
the market place since 1967 was, as repaired (too 
discrete hedging), correct.  

MYTH 2: OPTION TRADERS TODAY “USE” THE BLACK-
SCHOLES-MERTON FORMULA 

Traders don’t  do “Valuation” 

First, operationally, a price is not quite “valuation”. 
Valuation requires a strong theoretical framework with 
its corresponding fragility to both assumptions and the 
structure of a model. For traders, a “price” produced to 
buy an option when one has no knowledge of the 
probability distribution of the future is not “valuation”, 
but an expedient. Such price could change. Their 
beliefs do not enter such price. It can also be 
determined by his inventory.  

This distinction is critical: traders are engineers, 
whether boundedly rational (or even non interested in 
any form of probabilistic rationality), they are not privy 
to informational transparency about the future states of 
the world and their probabilities.  So they do not need a 
general theory to produce a price –merely the 
avoidance of Dutch-book style arbitrages against them, 
and the compatibility with some standard restriction: In 
addition to put-call parity, a call of a certain strike K 
cannot trade at a lower price than a call K+∆K 
(avoidance of negative call and put spreads), a call 
struck at K and a call struck at K+2 ∆K cannot be more 
expensive than twice the price of a call struck at K+∆K 
(negative butterflies), horizontal calendar spreads 
cannot be negative (when interest rates are low), and 
so forth. The degrees of freedom for traders are thus 
reduced: they need to abide by put-call parity and 
compatibility with other options in the market. 

In that sense, traders do not perform “valuation” with 
some “pricing kernel” until the expiration of the 
security, but, rather, produce a price of an option 
compatible with other instruments in the markets, with 
a holding time that is stochastic. They do not need top-
down “science”. 

When do we value? 

If you find traders operated solo, in a desert island, 
having for some to produce an option price and hold it 
to expiration, in a market in which the forward is 
absent, then some valuation would be necessary –but 
then their book would be minuscule. And this thought 
experiment is a distortion: people would not trade 
options unless they are in the business of trading 
options, in which case they would need to have a book 
with offsetting trades. For without offsetting trades, we 
doubt traders would be able to produce a position 
beyond a minimum (and negligible) size as dynamic 
hedging not possible. (Again we are not aware of many 
non-blownup option traders and institutions who have 
managed to operate in the vacuum of the Black 
Scholes-Merton argument). It is to the impossibility of 
such hedging that we turn next.  
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On the Mathematical Impossibility of 

Dynamic Hedging  

Finally, we discuss the severe flaw in the dynamic 
hedging concept. It assumes, nay, requires all moments 
of the probability distribution to exist15.  

Assume that the distribution of returns has a scale-free 
or fractal property that we can simplify as follows: for x 
large enough, (i.e. “in the tails”),  P[X>n x]/P[X>x] 
depends on n, not on x. In financial securities, say, 
where X is a daily return, there is no reason for 
P[X>20%]/P[X>10%] to be different from 
P[X>15%]/P[X>7.5%]. This self-similarity at all scales 
generates power-law, or Paretian, tails, i.e.,  above a 
crossover point, P[X>x]=K x-α.  It happens, looking at 
millions of pieces of data, that such property holds in 
markets –all markets, baring sample error. For 
overwhelming empirical evidence, see Mandelbrot 
(1963), which predates Black-Scholes-Merton (1973) 
and the jump-diffusion of Merton (1976); see also 
Stanley et al. (2000), and Gabaix et al. (2003).  The 
argument to assume the scale-free is as follows: the 
distribution might have thin tails at some point (say 
above some value of X). But we do not know where 
such point is –we are epistemologically in the dark as to 
where to put the boundary, which forces us to use 
infinity. 

Some criticism of these “true fat-tails” accept that such 
property might apply for daily returns, but, owing to the 
Central Limit Theorem, the distribution is held to 
become Gaussian under aggregation for cases in which 
α is deemed higher than 2. Such argument does not 
hold owing to the preasymptotics of scalable 
distributions: Bouchaud and Potters (2003) and 
Mandelbrot and Taleb (2010) argue that the 
presasymptotics of fractal distributions are such that 
the effect of the Central Limit Theorem are exceedingly 
slow in the tails –in fact irrelevant. Furthermore, there 
is sampling error as we have less data for longer 
periods, hence fewer tail episodes, which give an in-
sample illusion of thinner tails. In addition, the point 
that aggregation thins out the tails does not hold for 
dynamic hedging –in which the operator depends 
necessarily on high frequency data and their statistical 
properties. So long as it is scale-free at the time period 
of dynamic hedge, higher moments become explosive, 
“infinite” to disallow the formation of a dynamically 
hedge portfolio. Simply a Taylor expansion is impossible 
as moments of higher order that 2 matter critically –
one of the moments is going to be infinite.  

The mechanics of dynamic hedging are as follows.  
Assume the risk-free interest rate of 0 with no loss of 
                                                   

15 Merton (1992) seemed to accept the inapplicability of 
dynamic hedging  but he perhaps thought that these ills would 
be cured thanks to his prediction of the financial world 
“spiraling towards dynamic completeness”. Fifteen years later, 
we have, if anything, spiraled away from it. 

generality. The canonical Black-Scholes-Merton package 
consists in selling a call and purchasing shares of stock 
that provide a hedge against instantaneous moves in 
the security. Thus the portfolio π locally "hedged" 
against exposure to the first moment of the distribution 
is the following:  

 
where C is the call price, and S the underlying security.  

Take the discrete time change in the values of the 
portfolio  

 
By expanding around the initial values of S, we have 
the changes in the portfolio in discrete time. 
Conventional option theory applies to the Gaussian in 
which all orders higher than ∆S2 and disappears rapidly.  

  
 
Taking expectations on both sides,  we can see here 
very strict requirements on moment finiteness: all 
moments need to converge. If we include another term, 
of order ∆S3, such term may be of significance in a 
probability distribution with significant cubic or quartic 
terms.  Indeed, although the nth  derivative with respect 
to S can decline very sharply, for options that have a 
strike K away from the center of the distribution, it 
remains that the delivered higher orders of ∆S are 
rising disproportionately fast for that to carry a 
mitigating effect on the hedges.  

So here we mean all moments--no approximation. The 
logic of the Black-Scholes-Merton so-called solution 
thanks to Ito's lemma was that the portfolio collapses 
into a deterministic payoff.  But let us see how quickly 
or effectively this works in practice.  
The Actual Replication process is as follows: The payoff 
of a call should be replicated with the following stream 
of dynamic hedges, the limit of which can be seen here, 
between t and T  

 

Such policy does not match the call value: the 
difference remains stochastic (while  according to Black 
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Scholes it should shrink).  Unless one lives in a fantasy 
world in which such risk reduction is possible16. 

Further, there is an inconsistency in the works of 
Merton making us confused as to what theory finds 
acceptable: in Merton (1976) he agrees that we can 
use Bachelier-style option derivation in the presence of 
jumps and discontinuities –no dynamic hedging– but 
only when the underlying stock price is uncorrelated to 
the market. This seems to be an admission that 
dynamic hedging argument applies only to some 
securities: those that do not jump and are correlated to 
the market. 

 

Figure 2 A 25% Gap in Ericsson, one of the Most 
Liquid Stocks in the World. Such move can 
dominate hundreds of weeks of dynamic 
hedging. 

The Robustness of the Gaussian 

The success of the “formula” last developed by Thorp, 
and called “Black-Scholes-Merton” was due to a simple 
attribute of the Gaussian: you can express any 
probability distribution in terms of Gaussian, even if it 
has fat tails, by varying the standard deviation σ at the 
level of the density of the random variable. It does not 
mean that you are using a Gaussian, nor does it mean 
that the Gaussian is particularly parsimonious (since 
you have to attach a σ for every level of the price). It 
simply mean that the Gaussian can express anything 
you want if you add a function for the parameter σ, 
making it function of strike price and time to expiration.  

This “volatility smile”, i.e., varying one parameter to 
produce  σ(K), or “volatility surface”, varying two 
parameter, σ(S,t) is effectively what was done in 
different ways by Dupire (1994, 2005) and Derman and 
Kani (1994,1998), see Gatheral (2006).   They assume 
a volatility process not because there is necessarily 
such a thing –only as a method of fitting option prices 
to a Gaussian. Furthermore, although the Gaussian has 
finite second moment (and finite all higher moments as 
well), you can express a scalable with infinite variance 
using Gaussian “volatility surface”. One strong constrain 
on the σ parameter is that it must be the same for a 
                                                   

16 We often hear the misplaced comparison to Newtonian 
mechanics. It supposedly provided a good approximation until 
we had relativity. The problem with the comparison is that the 
thin-tailed distributions are not approximations for fat-tailed 
ones: there is a deep qualitative difference.  

put and call with same strike (if both are European-
style), and the drift should be that of the forward17. 

Indeed, ironically, the volatility smile is inconsistent 
with the Black-Scholes-Merton theory. This has lead to 
hundreds if not thousands of papers trying extend 
(what was perceived to be) the Black-Scholes-Merton 
model to incorporate stochastic volatility and jump-
diffusion. Several of these researchers have been 
surprised that so few traders actually use stochastic 
volatility models. It is not a model that says how the 
volatility smile should look like, or evolves over time; it 
is a hedging method that is robust and consistent with 
an arbitrage free volatility surface that evolves over 
time. 

In other words, you can use a volatility surface as a 
map, not a territory. However it is foolish to justify 
Black-Scholes-Merton on grounds of its use: we repeat 
that the Gaussian bans the use of probability 
distributions that are not Gaussian –whereas non-
dynamic hedging derivations (Bachelier, Thorp) are not 
grounded in the Gaussian.  

Order Flow and Options 

It is clear that option traders are not necessarily 
interested in probability distribution at expiration time –
given that this is abstract, even metaphysical for them. 
In addition to the put-call parity constrains that 
according to evidence was fully developed already in 
1904, we can hedge away inventory risk in options with 
other options. One very important implication of this 
method is that if you hedge options with options then 
option pricing will be largely demand and supply 
based18. This in strong contrast to the Black-Scholes-
Merton (1973) theory that based on the idealized world 
of geometric Brownian motion with continuous-time 
delta hedging then demand and supply for options 
simply should not affect the price of options. If 
someone wants to buy more options the market makers 
can simply manufacture them by dynamic delta hedging 
that will be a perfect substitute for the option itself.  

This raises a critical point: option traders do not 
“estimate” the odds of rare events by pricing out-of-
the-money options. They just respond to supply and 
demand. The notion of “implied probability distribution” 
is merely a Dutch-book compatibility type of 
proposition. 

Bachelier-Thorp 

The argument often casually propounded attributing 
the success of option volume to the quality of the Black 

                                                   
17 See Breeden and Litzenberger (1978), Gatheral (2006). 

See also Bouchaud and Potters (2001) for hedging errors in the 
real world. 

18See Gârleanu, Pedersen, and Poteshman (2009). 
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Scholes formula is rather weak. It is particularly 
weakened by the fact that options had been so 
successful at different time periods and places.  

Furthermore, there is evidence that while both the 
Chicago Board Options Exchange and the Black-
Scholes-Merton formula came about in 1973, the model 
was "rarely used by traders" before the 1980s 
(O'Connell, 2001). When one of the authors (Taleb) 
became a pit trader in 1992, almost two decades after 
Black-Scholes-Merton, he was surprised to find that 
many traders still priced options heuristically “sheets 
free”, “pricing off the butterfly”, and “off the 
conversion”, without recourse to any formula.  

Even a book written in 1975 by a finance academic 
appears to credit Thorpe and Kassouf (1967) -- rather 
than Black-Scholes (1973), although the latter was 
present in its bibliography. Auster (1975):  

Sidney Fried wrote on warrant hedges before 1950, 
but it was not until 1967 that the book Beat the 
Market by Edward O. Thorp and Sheen T. Kassouf 
rigorously, but simply, explained the “short 
warrant/long common” hedge to a wide audience.  

We conclude with the following remark. Sadly, all the 
equations, from the first (Bachelier), to the last pre-
Black-Scholes-Merton (Thorp)  accommodate a scale-
free distribution. The notion of explicitly removing the 
expectation from the forward was present in Keynes 
(1924) and later by Blau (1944) –and long a Call short 
a put of the same strike equals a forward.  These 
simple and effective arbitrage relationships appeared to 
be well known heuristics in 1904.  

One could easily attribute the explosion in option 
volume to the computer age and the ease of processing 
transactions, added to the long stretch of peaceful 
economic growth and absence of hyperinflation. From 
the evidence (once one removes the propaganda), the 
development of scholastic finance appears to be an 
epiphenomenon rather than a cause of option trading. 
Once again, lecturing birds how to fly does not allow 
one to take subsequent credit.  

This is why we call the equation Bachelier-Thorp. We 
were using it all along and gave it the wrong name, 
after the wrong method and with attribution to the 
wrong persons. It does not mean that dynamic hedging 
is out of the question; it is just not a central part of the 
pricing paradigm. It led to the writing down of a certain 
stochastic process that may have its uses, some day, 
should markets “spiral towards dynamic completeness”. 
But not in the present. 

 

 

References 

 

Auster, R., 1975. Option Writing and Hedging 

Strategies. New York: Exposition Press. 

Bachelier, L., 1900. Theory of speculation. In: P. 
Cootner (Ed.), 1964. The Random Character of Stock 
Market Prices. Cambridge: MIT Press. 

Bell, A.R., Brooks, C., Dryburgh, P.R. 2007. The English 
Wool Market c. 1230-1323. Cambridge: Cambridge 
University Press. 

Bernhard, A., 1970. More Profit and Less Risk: 
Convertible Securities and Warrants. Written and Edited 
by the Publisher and Editors of The Value Line 
Convertible Survey, Arnold Bernhard & Co., Inc 

Black, F., Scholes, M., 1973. The pricing of options and 
corporate liabilities. Journal of Political Economy 81, 
637–654 

Blau, G., 1944. Some aspects of the theory of futures 
trading. The Review of Economic Studies 12, 1-30 

Boness, A., 1964. Elements of a theory of stock-option 
value. Journal of  Political Economy 72, 163–175 

Bouchaud J.-P., Potters, M., 2003. Theory of Financial 
Risks and Derivatives Pricing, From Statistical Physics to 
Risk Management, 2nd Ed., Cambridge University Press. 

Bouchaud J.-P., Potters, M., 2001. Welcome to a non-
Black-Scholes world. Quantitative Finance 1, 482-483 

Breeden, D., Litzenberger, R. 1978. Prices of state-
contingent claims implicit in option prices. Journal of 
Business 51, 621–651  

Bronzin, V., 1908. Theorie der Prämiengeschäfte. 
Leipzig und Wien: Verlag Franz Deticke. 

De La Vega, J., 1688. Confusión de Confusiones. Re-
printed In: Extraordinary Popular Delusions and the 
Madness of Crowds & Confusión de  Confusiones. 
Fridson, M., S., (Eds.), 1996. New York: Wiley 
Publishing.  

De Pinto, I., 1771. An Essay on Circulation of Currency 
and Credit in Four Parts and a Letter on the Jealousy of 
Commerce, translated with annotations by S. Baggs 
1774. London: reprinted by Gregg International 
Publishers 1969. 

Derman, E., Kani, I., 1994. Riding on a smile. Risk 7, 
32–39 

Derman, E., Kani, I., 1998. Stochastic implied trees: 
Arbitrage pricing with stochastic term and strike 
structure of volatility. International Journal of 
Theoretical and Applied Finance 1, 61–110  

Derman, E., Taleb, N., 2005. The illusion of dynamic 
delta replication. Quantitative Finance 5, 323–326 

Dupire, B., 1994. Pricing with a smile. Risk 7, 18–20  

Dupire, B., 2005. Volatility derivatives modeling 
presentation. NYU. a copy of the presentation exist 



 

  
 
©  Copyright 2007 by N. N. Taleb.  

11 

online: www.math.nyu.edu/ 
carrp/mfseminar/bruno.ppt.  

Filer, H., 1959. Understanding Put and Call Options. 
New York: Popular Library. 

Gabaix, X. , Gopikrishnan, P., Plerou, V., Stanley, H.E., 
2003. A theory of power-law distributions in financial 
market fluctuations. Nature 423, 267-270 

Gann, W. D.,  1937. How to Make Profits in Puts and 
Calls. WA: Lambert Gann Publishing Co 

Gârleanu, N., Pedersen, L. H., Poteshman, A. M., 2009. 
Demand-based option pricing. Review of Financial 
Studies 22, 4259-4299 

Gatheral, J., 2006. The Volatility Surface. New York: 
John Wiley & Sons. 
Gelderblom, O., Jonker, J., 2005. Amsterdam as the 
cradle of modern futures and options trading, 1550-
1650. In: Goetzmann, N., Rouwenhorst, K. G., (Eds.), 
The Origins of Value: The Financial Innovations that 
Created Modern Capital Markets. USA: Oxford 
University Press. 

Gigerenzer, G., Todd, P. M. and the ABC Research 
Group, 2000. Simple Heuristics That Make Us Smart. 
Oxford: Oxford University Press. 

Haug, E. G., 2007. Derivatives Models on Models. New 
York: John Wiley & Sons. 

Hafner, W., Zimmermann, H., 2007. Amazing discovery: 
Vincenz Bronzin’s option pricing models. Journal of 
Banking and Finance 31, 531– 546 

Hafner, W., Zimmermann, H., 2009. Vinzenz Bronzin's 
Option Pricing Models. Exposition and Appraisal, 
Springer Verlag. 

Higgins, L. R., 1902. The Put-and-Call. London: E. 
Wilson.  

Kairys, J. P., Valerio, N., 1997. The market for equity 
options in the 1870s. Journal of Finance 52, 1707 – 
1723 

Keynes, J. M., 1924. A Tract on Monetary Reform. Re-
printed 2000, Amherst New York: Prometheus Books.  

Mandelbrot, B., 1963. The variation of certain 
speculative prices. The Journal of Business 36, 394–419 

Mandelbrot, B., Taleb, N., 2010. Mild vs. wild 
randomness: Focusing on risks that matter. In: Diebold, 
F., Doherty, N., Herring, R. (Eds.), The Known, the 
Unknown and the Unknowable in Financial Institutions. 
Princeton, N.J.: Princeton University Press.  

McKean, H. P., 1965. A free boundary problem for the 
heat equation arising from a problem in mathematical 
economics. Industrial Management Review 6(2), 32-39 

Merton R. C., 1973. Theory of rational option pricing. 
Bell Journal of Economics and Management Science 4, 
141–183. 

Merton R. C., 1976. Option pricing when underlying 
stock returns are discontinuous. Journal of Financial 
Economics 3, 125–144. 

Merton, R. C., 1992. Continuous-Time Finance, revised 
edition, Blackwell 

Mills, F., 1927. The Behaviour of Prices. New York: 
National Bureau of Economic Research. 

Mixon, S., 2009. Option markets and implied volatility: 
past versus present. Journal of Financial Economics 94, 
171-191  

Mixon, S., 2009. The foreign exchange option market, 
1917-1921. Working Paper, SSRN 

Nelson, S. A., 1904. The A B C of Options and 
Arbitrage. New York: The Wall Street Library. 

O'Connell, M., P., 2001. The Business of Options. New 
York: John Wiley & Sons.  

Poitras, G., 2009 The early history of option contracts. 
In Hafner, W., Zimmermann, H., (Eds.), Vinzenz 
Bronzin's Option Pricing Models. Exposition and 
Appraisal, Springer Verlag. 

 

Reinach, A. M., 1961. The Nature of Puts & Calls. New 
York: The Book-mailer. 

Ross, S., 2005. Neoclassical Finance. Princeton: 
Princeton University Press. 

Rubinstein M., 1998. Derivatives. www.in-the-
money.com 

Rubinstein M., 2006. A History of The Theory of 
Investments. New York: John Wiley & Sons. 

Ruffino, D., Treussard, J., 2006. Derman and Taleb's 
`The ilusion of dynamic replication': A comment. 
Quantitative Finance 6, 365-367 

Samuelson, P., 1965. Rational theory of warrant 
pricing. Industrial Management Review 6, 13–31 

Sprenkle, C., 1961. Warrant prices as indicators of 
expectations and preferences. Yale Economics Essays 1, 
178–231.  

Stanley, H. E., Amaral, L. A. N.,  Gopikrishnan, P.,   
Plerou, V. 2000. Scale invariance and universality of 
economic fluctuations. Physica A 283, 31-41 

Stoll, H., 1969. The relationship between put and call 
prices. Journal  of Finance 24, 801–824. 

Taleb, N., 1997. Dynamic Hedging. New York: John 
Wiley & Sons. 

Taleb, N., 2007a. The Black Swan. New York: Random 



 

  
 
©  Copyright 2007 by N. N. Taleb.  

12 

House. 

Thorp, E. O., 1973. A corrected derivation of the Black-
Scholes option model. Presented at the CRSP 
proceedings in 1976. 

Thorp, E. O., 1969. Optimal gambling systems for 
favorable games. Review of the International Statistics 
Institute 37, 273-293 

Thorp, E. O., Kassouf, S. T.,  1967. Beat the Market. 
New York: Random House  

Thorp, E. O.,  2002. What I knew and when I knew it – 
Part 1, Part 2, Part 3. Wilmott Magazine, Sep-02, Dec-
02, Jan-03 

Thorp, E. O., 2007. Edward Thorp on gambling and 
trading. In: Haug, E. G., 2007. Derivatives Models on 
Models. New York: John Wiley & Sons. 

Thorp, E. O., Kassouf, S. T., 1967. Beat the Market. 
New York:  Random House. 

Weinstein, M. H., 1931. Arbitrage to Securities. New 
York: Harper Brothers. 

Whitehouse, K., 2007. One ‘quant' sees shakeout for 
the ages-'10,000 years'. Wall Street Journal, August 11-
12 

 

 

 

 

 



78   Harvard Business Review  |  October 2009  |  hbr.org

SPOTLIGHT ON

RISK
SPOTLIGHT ON

RISK

G
et

ty
 Im

ag
es

WE DON’T LIVE in the world for 
which conventional risk-management 
textbooks prepare us. No forecasting 
model predicted the impact of the 
current economic crisis, and its conse-
quences continue to take establishment 
economists and business academics 
by surprise. Moreover, as we all know, 
the crisis has been compounded by the 
banks’ so-called risk-management mod-
els, which increased their exposure to 
risk instead of limiting it and rendered 
the global economic system more fragile 
than ever. 
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we call them Black Swan events – are increasingly 
dominating the environment. Because of the in-
ternet and globalization, the world has become 
a complex system, made up of a tangled web of 
relationships and other interdependent factors. 
Complexity not only increases the incidence of 
Black Swan events but also makes forecasting even 
ordinary events impossible. All we can predict is 
that companies that ignore Black Swan events will 
go under. 

Instead of trying to anticipate low-probability, 
high-impact events, we should reduce our vulner-
ability to them. Risk management, we believe, 
should be about lessening the impact of what we 
don’t understand – not a futile attempt to develop 
sophisticated techniques and stories that perpetu-
ate our illusions of being able to understand and 
predict the social and economic environment. 

To change the way we think about risk, we must 
avoid making six mistakes. 

1
We think we can manage risk 
by predicting extreme events. 
This is the worst error we make, for a couple of 
reasons. One, we have an abysmal record of pre-
dicting Black Swan events. Two, by focusing our 
attention on a few extreme scenarios, we neglect 
other possibilities. In the process, we become more 
vulnerable. 

It’s more eff ective to focus on the consequences – 
that is, to evaluate the possible impact of extreme 
events. Realizing this, energy companies have fi -
nally shift ed from predicting when accidents in 
nuclear plants might happen to preparing for the 
eventualities. In the same way, try to gauge how 
your company will be aff ected, compared with com-
petitors, by dramatic changes in the environment. 
Will a small but unexpected fall in demand or sup-
ply aff ect your company a great deal? If so, it won’t 
be able to withstand sharp drops in orders, sudden 
rises in inventory, and so on. 

In our private lives, we sometimes act in ways that 
allow us to absorb the impact of Black Swan events. 
We don’t try to calculate the odds that events will 
occur; we only worry about whether we can handle 
the consequences if they do. In addition, we readily 
buy insurance for health care, cars, houses, and so 
on. Does anyone buy a house and then check the 
cost of insuring it? You make your decision aft er 
taking into account the insurance costs. Yet in busi-

ness we treat insurance as though it’s an option. It 
isn’t; companies must be prepared to tackle conse-
quences and buy insurance to hedge their risks. 

2
We are convinced that studying the past 
will help us manage risk. 
Risk managers mistakenly use hindsight as foresight. 
Alas, our research shows that past events don’t bear 
any relation to future shocks. World War I, the at-
tacks of September 11, 2001 – major events like those 
didn’t have predecessors. The same is true of price 
changes. Until the late 1980s, the worst decline in 
stock prices in a single day had been around 10%. 
Yet prices tumbled by 23% on October 19, 1987. Why 
then would anyone have expected a meltdown aft er 
that to be only as little as 23%? History fools many. 

You oft en hear risk managers – particularly those 
employed in the fi nancial services industry – use 
the excuse “This is unprecedented.” They assume 
that if they try hard enough, they can fi nd prec-
edents for anything and predict everything. But 
Black Swan events don’t have 
precedents. In addition, today’s 
world doesn’t resemble the 
past; both interdependencies 
and nonlinearities have in-
creased. Some policies have no 
eff ect for much of the time and 
then cause a large reaction. 

People don’t take into ac-
count the types of randomness 
inherent in many economic 
variables. There are two kinds, 
with socioeconomic random-
ness being less structured and 
tractable than the randomness 
you encounter in statistics text-
books and casinos. It causes winner-take-all eff ects 
that have severe consequences. Less than 0.25% 
of all the companies listed in the world represent 
around half the market capitalization, less than 
0.2% of books account for approximately half their 
sales, less than 0.1% of drugs generate a little more 
than half the pharmaceutical industry’s sales – and 
less than 0.1% of risky events will cause at least half 
your losses. 

Because of socioeconomic randomness, there’s no 
such thing as a “typical” failure or a “typical” success. 
There are typical heights and weights, but there’s no 
such thing as a typical victory or catastrophe. We 

Because of 
socioeconomic 
randomness, there’s 
no such thing as a  
 “typical” failure 
or a “typical” 
success.
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have to predict both an event and its magnitude, 
which is tough because impacts aren’t typical in 
complex systems. For instance, when we studied 
the pharmaceuticals industry, we found that most 
sales forecasts don’t correlate with new drug sales. 
Even when companies had predicted success, they 
underestimated drugs’ sales by 22 times! Predicting 
major changes is almost impossible. 

3
We don’t listen to advice about 
what we shouldn’t do. 
Recommendations of the “don’t” kind are usu-
ally more robust than “dos.” For instance, telling 
someone not to smoke outweighs any other health-
related advice you can provide. “The harmful eff ects 
of smoking are roughly equivalent to the combined 
good ones of every medical intervention developed 
since World War II. Getting rid of smoking provides 
more benefi t than being able to cure people of 
every possible type of cancer,” points out genetics 
researcher Druin Burch in Taking the Medicine. In 
the same vein, had banks in the U.S. heeded the 
advice not to accumulate large exposures to low-
probability, high-impact events, they wouldn’t be 
nearly insolvent today, although they would have 
made lower profi ts in the past. 

Psychologists distinguish between acts of com-
mission and those of omission. Although their im-
pact is the same in economic terms – a dollar not 

lost is a dollar earned – risk 
managers don’t treat them 
equally. They place a greater 
emphasis on earning profi ts 
than they do on avoiding 
losses. However, a company 
can be successful by prevent-
ing losses while its rivals go 
bust – and it can then take 
market share from them. In 
chess, grand masters focus on 

avoiding errors; rookies try to win. Similarly, risk 
managers don’t like not to invest and thereby con-
serve value. But consider where you would be today 
if your investment portfolio had remained intact 
over the past two years, when everyone else’s fell 
by 40%. Not losing almost half your retirement is 
undoubtedly a victory. 

Positive advice is the province of the charlatan. 
The business sections in bookstores are full of suc-
cess stories; there are far fewer tomes about fail-

ure. Such disparagement of negative advice makes 
companies treat risk management as distinct from 
profi t making and as an aft erthought. Instead, cor-
porations should integrate risk-management ac-
tivities into profi t centers and treat them as profi t-
generating activities, particularly if the companies 
are susceptible to Black Swan events. 

4
We assume that risk can be 
measured by standard deviation. 
Standard deviation – used extensively in fi nance as 
a measure of investment risk – shouldn’t be used 
in risk management. The standard deviation corre-
sponds to the square root of average squared varia-
tions – not average variations. The use of squares 
and square roots makes the measure complicated. 
It only means that, in a world of tame randomness, 
around two-thirds of changes should fall within cer-
tain limits (the –1 and +1 standard deviations) and 
that variations in excess of seven standard devia-
tions are practically impossible. However, this is in-
applicable in real life, where movements can exceed 
10, 20, or sometimes even 30 standard deviations. 
Risk managers should avoid using methods and 
measures connected to standard deviation, such as 
regression models, R-squares, and betas. 

Standard deviation is poorly understood. Even 
quantitative analysts don’t seem to get their heads 
around the concept. In experiments we conducted 
in 2007, we gave a group of quants information 
about the average absolute movement of a stock 
(the mean absolute deviation), and they promptly 
confused it with the standard deviation when asked 
to perform some computations. When experts are 
confused, it’s unlikely that other people will get it 
right. In any case, anyone looking for a single num-
ber to represent risk is inviting disaster. 

5
We don’t appreciate that what’s 
mathematically equivalent isn’t 
psychologically so. 
In 1965, physicist Richard Feynman wrote in The 
Character of Physical Law that two mathemati-
cally equivalent formulations can be unequal in 
the sense that they present themselves to the hu-
man mind in diff erent ways. Similarly, our research 
shows that the way a risk is framed infl uences peo-

No one should have 
a piece of the upside 
without a share 
of the downside.
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ple’s understanding of it. If you tell investors that, 
on average, they will lose all their money only every 
30 years, they are more likely to invest than if you 
tell them they have a 3.3% chance of losing a certain 
amount each year. 

The same is true of airplane rides. We asked par-
ticipants in an experiment: “You are on vacation in 
a foreign country and are considering fl ying a local 
airline to see a special island. Safety statistics show 
that, on average, there has been one crash every 
1,000 years on this airline. It is unlikely you’ll visit 
this part of the world again. Would you take the 
fl ight?” All the respondents said they would. 

We then changed the second sentence so it read: 
“Safety statistics show that, on average, one in 1,000 
fl ights on this airline has crashed.” Only 70% of the 
sample said they would take the fl ight. In both cases, 
the chance of a crash is 1 in 1,000; the latter formu-
lation simply sounds more risky. 

Providing a best-case scenario usually increases the 
appetite for risk. Always look for the diff erent ways 
in which risk can be presented to ensure that you 
aren’t being taken in by the framing or the math. 

6
We are taught that effi ciency and 
maximizing shareholder value don’t 
tolerate redundancy. 
Most executives don’t realize that optimization 
makes companies vulnerable to changes in the en-
vironment. Biological systems cope with change; 
Mother Nature is the best risk manager of all. That’s 
partly because she loves redundancy. Evolution has 
given us spare parts – we have two lungs and two 
kidneys, for instance – that allow us to survive. 

In companies, redundancy consists of appar-
ent ineffi  ciency: idle capacities, unused parts, and 
money that isn’t put to work. The opposite is le-
verage, which we are taught is good. It isn’t; debt 
makes companies – and the economic system – frag-
ile. If you are highly leveraged, you could go under if 
your company misses a sales forecast, interest rates 
change, or other risks crop up. If you aren’t carry-
ing debt on your books, you can cope better with 
changes. 

Overspecialization hampers companies’ evolu-
tion. David Ricardo’s theory of comparative advan-
tage recommended that for optimal effi  ciency, one 
country should specialize in making wine, another 
in manufacturing clothes, and so on. Arguments like 
this ignore unexpected changes. What will happen 

if the price of wine collapses? In the 1800s many cul-
tures in Arizona and New Mexico vanished because 
they depended on a few crops that couldn’t survive 
changes in the environment. 

• • •

One of the myths about capitalism is that it is about 
incentives. It is also about disincentives. No one 
should have a piece of the upside without a share 
of the downside. However, the very nature of com-
pensation adds to risk. If you give someone a bonus 
without clawback provisions, he or she will have an 
incentive to hide risk by engaging in transactions 
that have a high probability of generating small 
profi ts and a small probability of blowups. Execu-
tives can thus collect bonuses for several years. If 
blowups eventually take place, the managers may 
have to apologize but won’t have to return past 
bonuses. This applies to corporations, too. That’s 
why many CEOs become rich while shareholders 
stay poor. Society and shareholders should have the 
legal power to get back the bonuses of those who 
fail us. That would make the world a better place. 

Moreover, we shouldn’t off er bonuses to those 
who manage risky establishments such as nuclear 
plants and banks. The chances are that they will cut 
corners in order to maximize profi ts. Society gives 
its greatest risk-management task to the military, 
but soldiers don’t get bonuses. 

Remember that the biggest risk lies within us: 
We overestimate our abilities and underestimate 
what can go wrong. The ancients considered hubris 
the greatest defect, and the gods punished it merci-
lessly. Look at the number of heroes who faced fatal 
retribution for their hubris: Achilles and Agamem-
non died as a price of their arrogance; Xerxes failed 
because of his conceit when he attacked Greece; 
and many generals throughout history have died for 
not recognizing their limits. Any corporation that 
doesn’t recognize its Achilles’ heel is fated to die 
because of it.    
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PRACTITIONER’S PERSPECTIVE

Bleed or Blowup? Why Do We Prefer Asymmetric Payoffs ?

In some strategies and life situations, it is said, one
gambles dollars to win a succession of pennies. In oth-
ers one risks a succession of pennies to win dollars.
While one would think that the second category would
be more appealing to investors and economic agents,
we have an overwhelming evidence of the popularity
of the first. A popular illustration of such asymmetry in
returns is evident in the story of the Long Term Capital
Management hedge fund. The fund derived steady re-
turns over a dozen quarters then lost all of them in addi-
tion to almost all its capital in a single observation (see
Lowenstein, 2000)–only for the main principals to re-
start a new, albeit milder, version of the strategy. Is
there a systematic bias in favor of such return profiles?1

Negative (or “left”) skewness can be presented by
considering a stream of gambles that differ from most
symmetric lotteries generally presented in the litera-
ture (where the agent usually has a 50% probability of
realizing a given gain, G, and a 50% probability of real-
izing a loss, L). The asymmetric case we consider has,
for a given expectation, both probabilities markedly di-
verging from 50%. A considerably negatively skewed
bet can present more than 99% probability of making
G and less 1% probability of losing L. While such
skewness may sound extreme we will see that there is
an abundance of instruments in the financial markets
that actually deliver such payoffs (one may even say
that almost all derivative products offer asymmetric
properties). More technically, the mathematical repre-
sentation of negative skewness defines it as a negative
third central moment, the product of the probabilities
by the cube of the payoffs deducted from the mean.

Would an economic agent facing a stream of stochas-
tic monetary payoffs prefer negative skewness? Given a
profile of monetary gambles, would he prefer to “bleed”
(i.e. undergo small but frequent losses) or “blowup,”2

i.e., take severe hits concentrated in small periods of
time? Statistical properties of popular classes of invest-
ments, earningsmanagementon thepartofcorporations
(where corporations manage their earnings to moder-
ately beat estimates most of the time and take hits on oc-
casion 3), and mechanisms like covered call writing
(where investors clip their upside gains for a small fee)
showsastrongevidence for thepredilection fornegative
skewness on the part of investors. Indeed such prefer-
ence is mostly expressed in the growth of classes of fi-

nancial securities like hedge funds that, according to the
empirical literature (see Fung and Hsieh, 1997, Kat,
2002), seem to be severely plagued by such properties,
evenpossiblydesignedtocater to the investors’biases.

We divide biases into two categories, namely, a) cog-
nitive, as agents may not understand the true implica-
tions of skewness, or why the expectation of a payoff is
not necessarily better even if it generates steady returns;
b) behavioral, as they may prefer a set of payoffs to an-
other.Theaimof thisshortdiscussion is tomake thecon-
nect this preference for skewness with research that has
been done in the behavioral literature–and describe fur-
ther experiments would be needed to confirm it. It is or-
ganized as follows. Skewness is discussed, along with
its prevalence in the growing new investments classes.
We examine three major angles in the behavioral re-
search: a) the belief in the “law of small numbers” and
aspects of the overconfidence literature, b) prospect the-
ory,andc) thepromisingfieldofhedonicpsychology,an
offshootofprospect theory.Theaimif thisnote isnot the
displayof theevidencebuthintsanddirectionforconfir-
matory research.

Skewed Payoffs and Financial
Instruments

How are these payoffs constructed? Instruments
abound. Consider the following examples, which we
divide into direct (i.e. strategy analyzed on their own
merit) and comparative (strategies analyzed in compar-
ison with a benchmark).

Examples of Directly Negatively
Skewed Bets

Loans and credit-related instruments. Youlend
to an entity at a rate higher than the risk-free one prevail-
ing in the economy. You have a high probability to earn
the entire interest amount, except, of course in the event
of default where you may lose (depending on the recov-
ery rate) approximately half of your investment. The
lower the risk of default, the more asymmetric the pay-
off. The same applies to investments in high yielding
currencies that are pegged to a more stable one (say the
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Argentine peso to the dollar) but occasionally experi-
ence a sharp devaluation.

Derivative instruments. A trader sells a contin-
gent claim. If the option is out-of-the-money the payoff
stream for such strategy is frequent profits, infrequent
large losses, in proportion to how far out-of-the-money
the option is. It is easy to see in the volumes that most
traded options are out-of-the-money.4 Note that a “mar-
ket neutral” or “hedged” (i.e., made insensitive to the di-
rection of the market)5 such strategy does not signifi-
cantly mitigate such asymmetry, since the mitigation of
such risk of large losses implies continuous adjustment
of the position, a strategy that fails with discontinuous
jumps in the price of the underlying security. A seller of
an out-of-the money option can make a profit as fre-
quently as he wishes, possibly 99% of the time by, say
selling on a monthly basis options estimated by the mar-
ket to expire worthless 99% of the time.

Arbitrage. There are classes of arbitrage opera-
tions such as: 1) “merger arbitrage” in which the opera-
tor engages in betting that the merger will take place at a
given probability and loses if the merger is cancelled
(the opposite is called a “Chinese”). These trades gener-
ally have the long odds against the merger. 2) “Conver-
gence trading” where a high yielding security is owned
and an equivalent one is shorted thinking that they con-
verge to each others, which tends to happen except in
rare circumstances. The hedge fund boom has resulted
inaproliferationofpackaged instrumentsof someopac-
ity that engage in a variety of the above strategies–ones
that do let themselves be revealed through naive statisti-
cal observation.

Example of Comparatively Skewed
Bets

Covered calls writing. Investors have long en-
gaged in the “covered write” strategies by selling an
option against their portfolio, thereby increasing the
probability of a profit in return for a reduction of the
upside potential. There is an abundant empirical liter-
ature on covered writes (see Board, Sutcliffe and
Patrinos, 2000, for a review, and Whaley, 2002 for a
recent utility-based explanation) where investors find
gains in utility from capping payoffs as the marginal
utility of gains decreases at a higher asset price. In-
deed the fact that individual investors sell options at
cheaper than their actuarial value can only be ex-
plained by the utility effect. For a mutual fund man-
ager, doing such “covered writing” against his portfo-
lio increases the probability of beating the index in
the short run, but subjects him to long term
underperformance as he will give back such
outperformance during large rallies.

Properties of a Left-skewed Payoff

In brief, a negatively skewed stream offer the fol-
lowing attributes:

Property 1: Camouflage of the Mean
and Variance

The true mean of the payoff is different from the
median, in proportion to the skewness of the bet. A
typical return will, say, be higher than the expected
return. It is consequently easier for the observer of
the process to be fooled by the true mean particularly
if he observes the returns without a clear idea about
the nature of the underlying (probability) generator.
But things are worse for the variance as most of the
time it we be lower than the true one (intuitively if a
shock happens 1% of the time then the observed vari-
ance over a time window will decrease between real-
izations then sharply jump after the shock).

Property 2: Sufficiency of Sample Size

It takes a considerably longer sample to observe
the properties under a skewed process than otherwise.
For example, consider a bet with 99% probability of
making G and 1% probability of losing L. In this ex-
ample, the properties will not reveal themselves 99%
of the time–and when they do, it is always a little late
as the decision has already been made. Contrast that
with a symmetric bet where the properties converge
rather rapidly at the square root of the number of ob-
servations.

Property 3: The Smooth Ride Effect.

As mentioned above, the observed variance of the
process is generally lower than the true variance most
of the time. This means, simply, that the more skew-
ness, the more the process will generate steady returns
with smooth ride attributes, concentrating the variance
in a brief period, the brevity of which is proportional to
the variance. In another word, an investor has, without
a decrease in risk, a more comfortable ride most of the
time, with an occasional crash.

Overconfidence and Belief in the Law
of Small Numbers

The first hint of an explanation for the neglect of the
small risks of large losses comes from the early litera-
ture on behavior under uncertainty. Tversky and
Kahneman (1971) wrote “We submit that people view a
sample randomly drawn from a population as highly
representative, that is, similar to a population in all es-
sential characteristics.” The consequence is the induc-
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tive fallacy: overconfidence in the ability to infer gen-
eral properties from observed facts, “undue confidence
in early trends” and the stability of observed patterns
and deriving conclusions with more confidence at-
tached to them than can be warranted by the data. Worst,
the agent finds causal explanations or perhaps distribu-
tionalattributes thatconfirmhisunduegeneralization.6

It is easy to see that the “small numbers” gets exac-
erbated with skewness since the observed mean will
usually be different from the true mean and the ob-
served variance will usually be lower than the true one.
Now consider that it is a fact that in life, unlike a labo-
ratory or a casino, we do not observe the probability
distribution from which random variables are drawn.
We only see the realizations of these random pro-
cesses. It would be nice if we could, but it remains that
we do not measure probabilities as we would measure
the temperature or the height of a person. This means
that when we compute probabilities from past data we
are making assumptions about the skewness of the gen-
erator of the random series–all data is conditional upon
a generator. In short, with skewed packages, Property 1
comes into play and we tend to believe what we see.

The literature on “small numbers” implies that
agents have a compressed, narrower distribution in their
minds than warranted from the data. The literature on
overconfidence studies the bias from another angle by
examining the wedge between the perception of un-
likely events and their actual occurrence as well as the
failure to calibrate from past errors. Since Alpert and
Raiffa (1982) studies have documented how agents un-
derestimate the extreme values of a distribution in a sur-
prising manner; violations are far more excessive than
one would expect: events that are estimated to occur less
than 2% of the time will take place up to 49%. There has
been since a long literature on overconfidence (in the
sense of agents discounting the probability of adverse
events while engaging in a variety of projects), see
Kahneman and Lovallo (1993), Hilton (2003).

“Every Day is a New Day”: The
Implications of Prospect Theory

Prospect theory derives its name from the way
agents face prospects or lotteries (Kahneman and
Tversky, 1979). Its central idea is that economic agents
reset their “utility” function to ignore, to some extent,
accumulated performance and focus on the changes in
wealth in their decision making under uncertainty. One
may accumulate large quantities of wealth, but habitu-
ation makes him reset to the old Wall Street adage “ev-
ery day is a new trading day,” which means that he will
look at gains and losses from the particular strategy,
not the absolute levels of wealth and make decisions
accordingly. The reference point is the individual’s
point of comparison, the “status quo” against which al-

ternative scenarios are compared. Moreover prospect
theory differs from “utility theory” per se in the separa-
tion of decision probability from the “value function.”
Decision probability, or weighting function, has the
property of exaggerating small probabilities and un-
derestimating large ones.

It is noteworthy that prospect theory was empiri-
cally derived from one-shot experiments with agents
subjected to questions in which the odds were sup-
plied.7 It is the value function of the prospect theory
that we examine next, rather than probabilities used in
the decision-making. The normative neoclassical util-
ity theory stipulates an increased sensitivity to losses
and a decreased one to gains (investors would prefer
negative skewness only for their increase but not de-
crease, in wealth). On the other hand, the value func-
tion of prospect theory documents a decreased sensi-
tivity to both gains and losses, hence a marked overall
preference for negative skewness. At the core, the dif-
ference is simply related to the fact that operators are
more concerned with the utility of changes in wealth
rather than those of the accumulated wealth itself, cre-
ating a preference for a given path dependence in the
sequences of payoffs.

To see how the empirically derived version of util-
ity theory presents asymmetric higher order proper-
ties, consider the following proposed representation
of Tversky and Kahneman (1992). One has a value
function, V+(x), for x positive or 0, and V-(x) for x
strictly negative.

V+(x)= xα

V-(x)= (-λ)(-x)α

Fromthis it is easy tosee that,withα<1, thatV iscon-
cave in the profit domain and convex to in the loss do-
main.Lookingat thesecondderivatives,oneobserves:

V+’’(x)= α (α-1) xα-2 ; it is negative: a large
profit has an incrementally smaller impact on the
“utility” of the individual.

V-’’(x)= -λ α (α-1) (-x)α-2 ; it is positive, larger
losses have a numbing effect.

Hence, the value of a large loss is higher than the sum
of the value of losses. In other words the agent’s utility
resides in incurring a sharp hit than the same amount in
piecemeal tranches. A loss of 100 (blowup) is better
(from the value function standpoint) than 100 times a
loss of 1 (bleed).8

Note that, by comparison, the attributes of the con-
ventional Von Neuman-Morgenstern utility of wealth
(instead of payoffs). It results in asymmetry in prefer-
ences: U(W) is concave for all levels of wealth W
which makes the investor prefer the frequent small
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losses to the large occasional one, as well as the fre-
quent small profits to the large infrequent ones. In the
domain of gains or increase in wealth there is an con-
vergence between the two methods of viewing utility.

So far the value function seems to confirm the
preference for skewness hypothesis. Prospect theory
has been subjected to all manner of experiments and
the concavity in the domain of losses has shown to be
robust. However we are confronted here with a modi-
cum of ambiguity–the overestimation of the odds in
the probability weighting function seems incompati-
ble with the statement in the previous section con-
cerning the underestimation of the outliers.

We can safely ignore at the probability weighting
function, as we are looking at the results of risk tak-
ing in a framework of purely inductive inference,
where the probabilities and the risks are not supplied,
only discovered by agents and therefore subjected to
cognitive biases. Recent research (Barron and Erev,
2003) shows experimental evidence that agents un-
derweight small probabilities when they engage in se-
quential experiments in which they derive the proba-
bilities themselves. Whether this comes from biases
in our inductive inference machinery or the fact that
we do not handle abstract probabilities properly (the
“risk as feeling” theories) is to be ascertained. Note
that the intuition of the problem is presented in an
early paper by Slovic, Fischhoff, Lichtenstein, Corri-
gan, and Combs (1977), with the explanatory title of
“preference for insuring against probable small
losses”; they attributed their results consistent with
the neglect of large infrequent losses to the “the se-
quential nature of the problem.”9

Hedonic Adaptation and Quality of
Life Perspective

The central idea behind recent research on well-be-
ing in hedonic psychology is the existence of a
set-point of happiness, to which the agent tends to re-
vert after some circumstantial departure. A positive or
negative change in material conditions brings some
changes in the individual well-being, but soon the pro-
cess of habituation causes the reversion to the old level
of life satisfaction. It is the equivalent of the utility
curve resetting at the origin in the prospect theory case
and the new changes in conditions mattering more–as
if the accumulated changes did not bring a permanent
change in one’s utility.

The idea has been called the “hedonic treadmill” af-
ter the seminal paper, Brickman and Campbell (1971).
Studies document that paraplegics after suffering from
the onset of the impairment converge soon after to the
general level of happiness of the population. Lottery
winners also do not seem to hold on to significant per-
manent gains in their happiness and well-being. Aca-
demics granted tenure are no happier a few months
later than they were before. The same applies to gen-
eral societies experiencing abundance. Such mecha-
nisms of adaptation are the backbone of the research on
happiness and economics–an emerging branch in re-
search, see Layard (2003), Frey and Stutzer (2002). In-
deed utility was associated by Bentham to a measure of
individual and communal happiness; it seems that eco-
nomics has made a return to it.10

Seen in the context of skewness, the notion of habit-
uation implies the following: concavity of good events;
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FIGURE 1
The Kahneman-Tversky Value Function

Note: The estimation in Tversky and Kahneman (1992) for ! =2.25, " = .65: losses are 2.25 times worse than profits. Note that a loss of
$100,000 has for value –56,517, a loss of $1000 has for value –982, 1/57th of the pain. The relationship reverses for the gain domain.
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convexity of bad ones. Indeed the value function of
“hedonic enjoyment” is deemed to have the same
higher order properties as prospect theory (Kahneman,
1999). Again consider if the value function in the posi-
tive domain, V+[x] is concave, then the implication is
that it is better to receive a steady flow of “good” events
than the same quantity in one block–whether they are
monetary gains or flows of enjoyment.

Consider twoeconomicagentsoperatingwithmirror
portfolios and strategies. The first, whom we call Nero,
loses $1000 for 99 consecutive weeks (he “bleeds”),
thenmakes$99,000on the100th.Thesecond,whomwe
call Carlos, has the exact opposite payoff (he “blows up”
on the 100th week). According to such aspect of the
hedonic literature, Carlos’well-being and quality of life
should be superior to those of Nero. The arithmetic sum
of the pleasure/pain should swing squarely in his favor:
consider that Carlos will experience 99 pleasurable
weeks, will go to work every Monday with the expecta-
tion of more good news, and that the pain experienced
from the loss will be short lived since he will recover
fromit soonafter.As toNero, theexhilarationof thegain
will not compensate the lengthy bleed period. As such
this theory provides the explanation that, everything
else being held equal, for a given mathematical expecta-
tion of a payoff, a negatively skewed one provides
higher quality of life. A few question remains, however,
to answer before the above argument can be accepted.

1. It seems that to analyze the summation of utili-
ties through time might not be straightforward as a
measure of total utility–and it would be normative to
assume that the agent should be subjected to one in-
stead of another. Indeed research (see Kahneman,
1999) from such experiments as those of subjects un-
dergoing colonoscopy, show that those do not base
their decisions on past linear summation of utility, but
to more complicated rules that tend to favor the peak
and ending part of the sequence (“peak-end rule”).
This gave rise to four possible utilities:

a. experienced utility–the summation of the value
function over the periods considered.

b. remembered utility–the agent’s recollection of
the total experienced utility, often at odds with
the previous one.

c. predicted utility–the utility that the agent be-
lieves will result from the action.

d. decision utility–the utility used in the decision
process.

We assumed that the experienced utility (here the sum
of the value function over time) was the one that mat-
tered. Further experiments are needed to confirm such
a point. Would it be the case that Nero, in spite of his
negative experienced utility, would have a higher re-
membered utility from the episode?

2. It seems that such treadmill effects are selective
and domain specific: there are things that lead to per-
manent happiness, or to an injection of utility that
carries permanent effects. In all of these situations we
do not revert to the origin or the set point. In some
cases, repetition or duration of a constant stimulus
even results in an increasing hedonic response–a pro-
cess the literature calls sensitization, the exact oppo-
site of the treadmill effect. The well-being literature
(Frederick and Loewenstein (1998)) shows evidence
that there are:

a. Some things to which we adapt rapidly: (im-
prisonment, increases in wealth, and disabili-
ties like paralysis),

b. Condition to which we adapt slowly (the death
of a loved one), and

c. Things to which we do not seem to adapt
(noise, debilitating diseases, foods, or an an-
noying roommate).

Now the question: do people adapt to “bleeding”? In
other words do people increase in sensitivity to the pain
of the “Chinese torture” treatment of slow losses? On
this experiments should be done.

Conclusion

This discussion has explored skewness from the
utility standpoint in addition to the perception of the
probability of large adverse shocks. Prospect theory
provides hints on this, but further research is needed to
examine how agents react in a multi-period frame-
work. This discussion also found evidence in the litera-
ture for the undervaluation of the probability of large
adverse shocks when risks are neither salient nor di-
rectly observable. This may explain the appetite for
negatively skewed payoffs. Finally, more research is
needed for determining the relationship between utility
of streams of payoffs and decision making.

Notes

1. We ignore in this discussion economic arguments justifying
skewness, the most significant of which is the “moral hazard”
argument. This argument stipulates that agents risking other
people’s capital would have the incentive to camouflage the
properties by showing a steady income. Intuitively, hedge
funds are paid on an annual basis while disasters happen every
four or five years, for example. The fund manager does not re-
pay his incentive fee.

2. See Gladwell (2002) for a popular presentation of the differ-
ence between the two classes of strategies.

3. DeGeorge and Zeckhauser (1999) show the skewness in the
distribution of the difference between announced and expected
corporate earnings. For an illustration of the custom by a mas-
ter of the practice see the memoirs of Jack Welsh (Welsh, 2001)
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who explains explicitly (and candidly) how he managed to use
accounting methods to the smooth the earnings of the con-
glomerate GE.

4. See Wilmott(1998) and Taleb (1997) for a discussion of dy-
namic hedging properties for an option seller.

5. This is called “delta hedging” where the operator buys and sells
the underlying security to respond to the changes in sensitivity
of the option to the underlying security. As the underlying
price rises the option trader may be insufficiently covered and
would need to buy more of the asset. Likewise the operator
needs to sell in response to the fall in the asset price. It is key
here that volatility causes losses for such an agent –particularly
discontinuities and jumps in the underlying security.

6. See Rabin(2000) for a modern treatment of the “small number”
problem.

7. There have been few studies of sequential behavior –see Thaler
and Johnson (1990) study of the sequential behavior of agents
to see how they are affected by gains and losses.

8.
9. There is a relevant recent piece of research in the recent litera-

ture on the affect heuristic (the tendency to determine the prob-
ability of an event by the emotional response that it causes).
Hsee and Rottenstreich (2004) show that agents, when sub-
jected to valuation “by feeling” (as opposed to valuation by
calculating – a process that is not subjected to the affect heuris-
tic) tend to be sensitive to the presence or absence of a given
stimulus rather than its magnitude. This implies that a loss is a
loss first, with further implications later. The same with profits.
This explains the concavity/convexity of the value function.
The agent would prefer the number of losses to be low and the
number of gains to be high, rather than optimizing the total per-
formance

10. Bentham’s definition (Behnthm, 1789): “By utility is meant
that property in any object, whereby it tends to produce benefit,
advantage, pleasure, good, or happiness, (all this in the present
case comes to the same thing) or (what comes again to the same
thing) to prevent the happening of mischief, pain, evil, or un-
happiness to the party whose interest is considered: if that party
be the community in general, then the happiness of the commu-
nity: if a particular individual, then the happiness of that indi-
vidual.”
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INTRODUCTION 

The philosophical motivation behind the interest in 
action (unless otherwise noted, by ‘action’ here we 
mean – as is usually the case – intentional human 
action by a single individual) is, traditionally, twofold. 
First, it is metaphysical: e.g., how various theories of 
action relate to the mind-body problem, to the age-old 
problem of free will (e.g., is there such a thing as a free 
action in a deterministic world), etc. Second, it is ethical 
and legal: whatever view action one accepts relates 
directly to the issue of what legal and moral 
responsibility, if any, an agent has for her (free or 
otherwise) actions. Both of these issues are dealt with 
elsewhere in this collection.  

In this part (part III) of the book, the contributors 
concentrate, instead, on the scientific theories, and 
their prediction and explanation of action. It is mostly 
concerned with epistemology, rather than with 
metaphysics or ethics: when, and under what 
circumstances, do we know enough about the person’s 
psychology (or folk psychology  or evolutionary 
psychology), neuroscience, ethnology, social position, 
etc., to predict (or explain) her actions. Of course, the 
science of action affects the philosophy of action and 
vice versa: e.g., developments in neuroscience can 
challenge free will, while on the other hand 
Librtarianism (in the Incompatibilist sense, not the 
political sense) might come up with convincing 
arguments why no scientific advance will ever eradicate 
it.  

The particular scientific theories and their relationship 
to action have been dealt with in other entries in the 
third section. In this entry, we wish – fittingly, perhaps, 
for the last entry in the last section of the collection 
that deals with general metaphysical and scientific 
theories of action (leaving only the fourth section which 
deals with the specific theories of individual 
philosophers) – to take a somewhat different track. 
Instead of arguing for a particular metaphysical or 
scientific view of action, we want to make a general 
point about predicting action, one that does not depend 
on accepting any particular metaphysical or scientific 
theory about it.  

OUR ARGUMENT 

We argue that X’s action in situation T is hard (in a 
sense to be made clear presently) for Y to predict, 
precisely in those situations where, for whatever 
reason, predicting X’s action is, for Y, a case of 
prediction under uncertainty; while it is comparatively 
easy when, as sometimes occurs, predicting X’s actions 
at T is, for Y, a case of prediction under known and 
computable probabilistic structure (such as that 
discussed by von Neumann and Morgenstern [1944]). 
This is the case whether X (or Y) are individuals or 
groups (such as, say, economic agents involved in 
transactions, or voters in an election), or indeed when 
X = Y (as in the case of an agent considering her own 
future actions.) To avoid a possible misunderstanding, 
we are not dealing with why prediction X's actions is 
often a case of prediction under uncertainty for Y. The 
libertarian and the (hard-determinist) neuroscientist will 
have very different answers. We are only saying that it 
is in those cases that predicting X's action is (especially) 
difficult for Y.  

We argue, further, that this distinction between 
tractable probabilistic structure and unstable, more 
complicated uncertainty is of great practical 
importance. It helps explains why in some cases the 
rational choice and economics literature considers that 
it is easier to predict the action of entire groups than of 
individuals, or why others may know our actions better 
than we know ourselves. It also explains why so many 
confident predictions fail: very often, the predictor falls 
into we call the 'ludic fallacy' – i.e., the creation of a 
crisp structure of games from which we can produce 
analytical responses that only hold in this artificial 
construct, and break down outside of it. It leads to the  
mistake of confusing a situation that is one of 
predicting under unstructured uncertainty as if it is one 
of predicting under structured probability (as in games 
of chance, hence the fallacy’s name). 
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 CLASSES OF  UNCERTAINTY 

In rational choice theory, there are three types of 
decision making. The first is decision making under 
certainty, when Y knows the (single) state of the world, 
S1, and therefore what outcome oi1 will be the certain 
result of each of his possible choices.  

The second is decision making under known and 
computable probabilistic structure, sometimes called 
“risk” following Knight (1921), when Y knows not only 
the possible states of the world, S1, S2, … Sj, … Sm, 
but also the probability each of them will occur. This is, 
for example, the case in games of chance (Y knows 
what numbers are on the roulette wheel and also what 
the probability is of each one coming up.)  

The third is that of true uncertainty, when there isn't 
even any reasonable probability value to give to the 
possible outcomes, or, as Keynes put it, where 'there is 
no scientific basis to form any calculable probability 
whatever': giving, as an example, the 'price of copper 
and the rate of interest twenty years hence' [Keynes 
1937]. In particular, games are a case where both sides 
must make decisions under uncertainty, since it is 
precisely the fact that the opponent is a human being 
that makes free choices and can act as she wishes 
(choosing any of the possible strategies within the 
context of the game) that makes it impossible to assign 
probabilities to her choice, as if she were a slot 
machine (see Von Neumann and Morgenstern [1944] or 
any of the numerous treatised on game theory, such as 
the classic Luce and Raiffa [1958]). 

The distinction between the three cases is not absolute: 
choice under certainty can be seen as a limiting case of 
choice under known probabilistic structure, with the 
probability p=1 for one outcome and p=0 for all the 
rest, although, as Levi [1980] points out, the analogy is 
not exact since having probability 1 is not logically the 
same as being certain. (There is a probability of 1 that 
randomly choosing a number between 0 and 1, 0.5 will 
not be chosen, but it is it not certain that it won't be.) 
Uncertainty, too, admits of degrees: one can be certain 
that the probability of an event is between 0.2 and 0.8, 
while being uncertain about what it is, as opposed to 
complete uncertainty, where no probability value at all 
can be assigned – or, equivalently, the agent is in 
complete uncertainty, assigning no narrower range of 
probabilities to the event than [0,1] (see Levi [1980]).  

PREDICTING OTHER PEOPLE’S ACTION  

There is a well-known tension between free choice (or, 
more generally, free action, or free will) and prediction. 
This goes back to St. Augustine [Augustine 1988] who 
wondered how free will is possible in a world where 
God has foreknowledge of all events, and is much older 
than that. This was discussed elsewhere in this book.  

The tension applies to probability as well: one is no 
more freely choosing what to have for breakfast 
tomorrow if an all-knowing being realized one has 
exactly a 87.5% of having fried eggs and a 12.5% of 
having cornflakes than that being decided one has a 
100% probability of having fried eggs. Indeed, some 
modern thinkers the “standard” probability-centered 
view of economics as misguided due to its lack of 
concern for people’s freedom to choose [Shackle 1979]. 
As said above, it is for this reason that outcomes are 
considered cases of decision under true uncertainty, not 
computable probabilistic structure.  

Typically, when Y attempts to predict X’s actions and X 
is an individual agent, then Y is in a situation where (as 
in games) the prediction is impossible since one is in a 
situation of uncertainty: Y has no way to assign X’s 
possible choices (the possible future actions he will 
decide to take) any probability, since X – from Y’s point 
of view – has freedom of choice in his actions. This 
situation is very common – it is probably the typical 
case when it comes to predicting individual actions – 
and is what was above called the “hard” case for 
prediction of X’s actions. 

The reason that the situation is typically that of 
uncertainty and not of risk is, to describe things using 
the terminology of randomness, that in order to have a 
good idea of what X’s probabilities of actions are Y 
needs to know what X’s “generator” – that is, the 
generating function that determines the mean, 
variance, and higher-level moments of his actions – 
what makes him tick, what is it in X that makes X have 
a certain probability to choose one way and another 
probability to choose another way.  

But, with human beings (for whatever reason, free will 
or neurochemical complexity or…), the generator is 
hidden, and there is no reason to believe it is of a 
“good” type. X’s generating process might not even 
have truly quantifiable properties, including such 
metrics used in statistical methods such as the  mean – 
let alone a variance; these might change over time; and 
so on. But typically, for Y to reduce the situation to that 
of risk – as in games of chance – X’s generator must be 
known, of a “good” type (has a finite mean ), and be 
stable. Usually, when Y attempts to predict X’s actions, 
none of these conditions hold [see Taleb 2007a, 
2007b].  

Nevertheless, Y can try to reduce this uncertainty: Y 
can learn about X’s psychological state, his genetics, his 
social position, and so on, in an attempt to predict X’s 
actions. This is sometimes successful. It is not at all 
rare for X’s spouse, or psychologist, or co-workers, to 
assign quite reasonable probabilities (indeed, 
sometimes even certainties) to X’s future actions – to 
“know X better than X knows themselves”. This means 
that Y has managed to reduce the situation to that of 
risk (or certainty) instead of uncertainty – that Y is 
able, due to his knowledge of X, to assign (reliable) 
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probabilities to X’s future actions. This is the “easy” 
case.  

It should be noted that, from Y’s point of view, X is not 
a free agent in the indeterminist sense of the term – X 
has no choice but to act as he does (either perform a 
certain action for sure, or to choose between several 
actions with a given probability for each). At most X can 
be a free actor in the compatilibist / “soft” determinist 
sense of (roughly) doing what one wants to do even if 
one could not help but want to do it.  

The disagreement between different views about free 
will and determinism can be described as a 
disagreement about whether, and if so under what 
conditions, can Y ever actually make the prediction of 
X’s actions a case of prediction under risk instead of  
under uncertainty: determinists say it could in principle, 
indeed sometimes in practice, be done, indeterminists 
deny it since they believe free will does not allow it, and 
in particular say that alleged counterexamples such as 
one’s spouse knowing what one will do tomorrow 
before oneself do not work for various reasons. (For a 
more detailed discussion of the free will / determinism 
issue, see elsewhere in this book). 

 

PREDICTING ONE’S OWN ACTIONS 

It is important to consider what happens when X = Y – 
when an agent attempts to predict their own future 
actions. As Levi [1990], Shackle [1979], and many 
others noted, inasmuch as an agent succeeds in this 
task, the agent is no longer acting freely (making a 
genuine choice) in the future: if I determine now that I 
will have eggs for breakfast tomorrow, I can predict my 
future actions, but I will no longer be making a choice 
tomorrow about what to have for breakfast. My actions 
tomorrow have been determined by the time of 
prediction. Predicting one’s own future actions is 
sometimes possible, but at a price. 

 

PREDICTING GROUP ACTION  

There is another way to reduce the uncertainty in 
prediction of action that, it seems, is inherent to the 
human condition where people make choices. It is for Y 
to predict, not what an individual X is doing, but what a 
group of individuals is doing. Here, the law of large 
numbers often comes to Y’s aid. It is sometimes 
possible to be able to predict the behavior of large 
groups of people – that of, say, the Republicans, or the 
investors in the market – despite the fact that each 
individual is unpredictable. If X is a group or 
organization, its potential actions might be (from Y’s 
point of view) describable with reliable probabilities 

despite the fact that each individual in the group cannot 
be.  

However, one must be very careful. For the law of large 
numbers to be applicable the random generators of 
individuals in the group must be independent of each 
other. If independence does not hold – if agents do not 
make decisions in isolation but while considering the 
actions of other agents, if Republicans do not decide 
independently on each issue but also take into account 
what other Republicans are doing – then convergence 
to commonly tractable properties will not take place, 
making the law of large numbers of little applicability 
and use .  

This behavior of the aggregate is qualitatively central. 
There is no exact definition on what constitutes a 
“complex system”, except for a consensus across the 
interdisciplinary literature that the degree of 
interdependence or “connectedness” of the elements is 
an essential determining property. The difference is 
crucial: in an ordinary system, the agents might not be 
predictable, but the various idiosyncrasies will tend to 
compensate each other, and the aggregate will appear 
more stable than any of its components, hence more 
predictable. However this cancelling-out effect is lost 
when the agents start acting in lock-steps, with 
contagions and feed-back loops causing exacerbation of 
the properties.  In such situations we have, in effect, a 
“group mind” with its own single generator – a single 
individual (from the point of view of predicting its 
actions) – and, what’s more, an “individual” more 
prone, if anything, to have a “bad” sort of generator, 
one that makes predicting its actions difficult (a case of 
prediction under uncertainty) than an actual person, 
due to the disproportionate effect extreme individuals 
tend to have on a group’s behavior, as can be seen in 
panics and bubbles (e.g., Mackay [1995]). 

 

THE DANGER OF PREDICTION 

To summarize, predicting X’s action is (relatively) easy 
when one has reason to believe X’s actions can be 
described under risk – with reliable probability 
functions. This is not impossible. But there are two risk 
involved here that are often involved. 

The first is what Taleb and Pilpel (2007) called the 
nonobservability of the generators of the random 
process, also described as the inverse problem. Upon 
observing a series of points, an infinity of generators, 
from four qualitatively different classes, can be ascribed 
to the data. In a way similar to Goodman’s riddle of 
induction, [Goodman, x] , the empirical data can 
justifiably lead to two completely opposite 
extrapolations. Indeed agents fall prey to choosing from 
the data what confirms (does not disconfirm) their 
theories. 
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This is related to the ludic fallacy, coming from the 
assumption by agents that outcomes resemble the 
structures of games of chance. The conventional 
economics and rational choice literature has 
traditionally assumed that people confront clear 
choices, in one period, with clear answers (even in 
some situations of unknown probabilities). The error is 
to believe that the passage from the “ludic”, casino-like 
analysis can be generalized outside of it. Indeed people 
tend to overestimate their knowledge of the world – 
here, they tend to overestimate, often ludicrously so, 
the amount of knowledge they have about the ‘random 
generator’ of X, whose actions they’re trying to predict. 
They tend to treat both other individuals and other 
groups as if those groups and individuals are as simple 
as games of chance – as if the behavior of Republicans 
or of the market or of individual strangers could, with a 
little shoe-horning perhaps, be described in terms of 
probability functions no more complex, and as (or 
more) reliable, than that of a roulette wheel.   

So the “forcing” of a situation of prediction under 
uncertainty of X’s future actions into one under known 
probabilistic structure commits two main errors. First of 
all, as we said, it assigns probabilities to X’s known 
actions when there is no justification. What’s more, and 
worse, it tends to ignore unknown and unimagined 
actions X could take: the very fact of analyzing X’s 
possible actions in terms of risk means to have a set of 
possible outcomes (X’s actions) among which the 
probability is distributed. But there is an unknown risk 
taken that some actions have been forgotten or ignored 
– typically, the most extreme ones! So we are not just 
dealing with the underestimation of the magnitude of 
possible outcomes, but with the possible sources of 
randomness. And such sources of randomness about 
other’s actions have a disproportionately high effect in 
real-life situations . 

The second problem is that of high impact uncertainty. 
or consequential low probability events. Sometimes we 
may be able to predict an agent’s action in ordinary 
circumstances where such prediction does not carry 
serious consequences, yet fail in those situations where 
prediction matters. We may be able to predict what a 
criminal can eat for breakfast, but miss out on whether 
or when he may commit a crime. We may be able to 
predict what the pilot would do on the weekend, but 
not if he will crash the plane. The point is serious as 1) 
these less ordinary, low probability events have a 
structure that is less computable than ordinary events, 
and 2) they represent the bulk of what is meaningful to 
predict  (Taleb and Pilpel, 2007). Indeed the role of 
these high-impact outliers is dominant in history, 
economic life, and politics. 
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A severe problem with risk bearing is when one does not have the faintest idea about the risks 
incurred. A more severe problem is when one does not have the faintest idea about the risks 
incurred yet thinks he has a precise idea of them. Simply, one needs a probability distribution 
to be able to compute the risks and assess the likelihood of some events.  

These probability distributions are not directly observable, which makes any risk calculation 
suspicious since it hinges on knowledge about these distributions. Do we have enough data? If 
the distribution is, say, the traditional bell-shaped Gaussian, then yes, we may say that we 
have sufficient data. But if the distribution is not from such well-bred family, then we do not 
have enough data. But how do we know which distribution we have on our hands? Well, from 
the data itself.  If one needs a probability distribution to gauge knowledge about the future 
behavior of the distribution from its past results, and if, at the same time, one needs the past to 
derive a probability distribution in the first place, then we are facing a severe regress loop–a 
problem of self reference akin to that of Epimenides the Cretan saying whether the Cretans 
are liars or not liars. And this self-reference problem is only the beginning. 

What is a probability distribution? Mathematically, it is a function with various properties 
over a domain of “possible outcomes”, X, which assigns values to (some) subsets of X. A 
probability distribution describes a general property of a system: a die is a fair die if the 
probability distribution assigned to it gives the values… It is not that different, essentially, 
than describing mathematically other properties of the system (such as describing its mass by 
assigning it a numerical value of two kilograms).  

The probability function is derived from specific instances from the system’s past: the tosses 
of the die in the past might justify the conclusion that, in fact, the die has the property of being 
fair, and thus correctly described by the probability function above. Typically with time series 
one uses the past for sample, and generates attributes of the future based on what was 
observed in the past. Very elegant perhaps, very rapid shortcut maybe, but certainly 
dependent on the following: that the properties of the future resemble those of the past, that 
the observed properties in the past are sufficient, and that one has an idea on how large a 
sample of the past one needs to observe to infer properties about the future. 

But there are worst news. Some distributions change all the time, so no matter how large the 
data, definite attributes about the risks of a given event cannot be inferred. Either the 
properties are slippery, or they are unstable, or they become unstable because we tend to act 
upon them and cause some changes in them.  

Then what is all such fuss about “scientific risk management” in the social sciences with 
plenty of equations, plenty of data, and neither any adequate empirical validity (these methods 
regularly fail to estimate the risks that matter) or any intellectual one (the argument above).  
Are we missing something?   
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An example. Consider the statement "it is a ten sigma event"T P

3
P T, which is frequently heard in 

connection with an operator in a stochastic environment who, facing an unforeseen adverse 
rare event, rationalizes it by attributing the event to a realization of a random process whose 
moments are well known by him, rather than considering the possibility that he used the 
wrong probability distribution.   

Risk management in the social sciences (particularly Economics) is plagued by the following 
central problem: one does not observe probability distributions, merely the outcome of 
random generators. Much of the sophistication in the growing science of risk measurement 
(since Markowitz 1952) has gone into the mathematical and econometric details of the 
process, rather than realizing that the hazards of using the wrong probability distribution will 
carry more effect than those that can be displayed by the distribution itself. This recalls the 
story of the drunkard looking for his lost keys at night under the lantern, because "that is 
where the light is". One example is the blowup of the hedge fund Long Term Capital 
Management in Greenwich, ConnecticutT P

4
P T. The partners explained the blowup as the result of 

"ten sigma event", which should take place once per lifetime of the universe. Perhaps it would 
be more convincing to consider that, rather, they used the wrong distribution. 

It is important to focus on catastrophic events for this discussion, because they are the ones 
that cause the more effect –so no matter how low their probability (assuming it is as low as 
operators seem to believe) the effect on the expectation will be high. We shall call such 
catastrophic events black swan events.  Karl Popper remarkedT P

5
P T that when it comes to 

generalizations like “all swans are white”, it is enough for one black swan to exist for this 
conclusion to be false. Furthermore, before you find the black swan, no amount of information 
about white swans – whether you observed one, 100, or 1,000,000 of them – could help you to 
determine whether or not the generalization “all swans are white” is true or not.  

We claims that risk bearing agents are in the same situations. Not only can they not tell before 
the fact whether a catastrophic event will happen, but no amount of information about the past 
behavior of the market will allow them to limit their ignorance--say, by assigning meaningful 
probabilities to the “black swan” event.  The only thing they can honestly say about 
catastrophic events before the fact is: “it might happen”. And, if it does indeed happen, then it 
can completely destroy our previous conclusions about the expectation operator, just like 
finding a black swan does to the hypothesis “all swans are white”. But by then, it’s too late.  

Obviously, mathematical statistics is unequipped to answer questions about whether or not 
such catastrophic events will happen: it assumes the outcomes of the process we observe is 

                                                

T P

3
P T That is, an event which is ten standard deviations away from the mean given a Normal distribution. Its 

probability is about once in several times the life of the universe. 

T P

4
P T Lowenstein 2000. 

T P

5
P T We use “remarked” not “noticed”—Aristotle already “noticed” this fact; it’s what he did with the fact that’s 

important.  
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governed by a probability distribution of a certain sort (usually, a Gaussian curve.) It tells us 
nothing about why to prefer this type of “well behaved” distributions to those who have 
“catastrophic” distributions, or what to do if we suspect the probability distributions might 
change on us unexpectedly.  

This leads us to consider epistemology. By epistemology we mean the problem of the theory 
of knowledge, although in a more applied sense than problems currently dealt with in the 
discipline: what can we know about the future, given the past? We claim that there are good 
philosophical and scientific reasons to believe that, in economics and the social sciences, one 
cannot exclude the possibility of future “black swan events”.  

 

  THREE TYPES OF DECISION MAKING AND THE PROBLEM OF RISK 
MANAGEMENT 

Suppose one wants to know whether or not UPU is the case for some proposition UPU – “The 
current president of the United States is George W. Bush, Jr.”; “The next coin I will toss will 
land ‘heads’”;  “There are advanced life forms on a planet orbiting the star Tau Ceti”.  

In the first case, one can become certain of the truth-value of the proposition if one has the 
right data:  who is the president of the United States.  If one has to choose one’s actions based 
on the truth (or falsity) of this proposition – whether it is appropriate, for example, to greet 
Mr. Bush as “Mr. President” – one is in a state of decision making under certainty. In the 
second case, one cannot find out the truth-value of the proposition, but one can find out the 
probability of it being true.  There is – in practice - no way to tell whether or not the coin will 
land “heads” or “tails” on its next toss, but under certain conditions one can conclude that 
p(‘heads’) = p(‘tails’) = 0.5.  If one has to choose one's actions based on the truth (or falsity) 
of this proposition – for example, whether or not to accept a bet with 1:3 odds that the coin 
will land “heads” – one is in a state of decision making under risk.   

In the third case, not only can one not find out the truth-value of the proposition, but one 
cannot give it any meaningful probability.  It is not only that one doesn’t know whether 
advanced life exist on Tau Ceti; one does not have any information that would enable one to 
even estimate its probability.  If one must make a decision based on whether or not such life 
exists, it is a case of decision making under uncertainty T P

6.
P T  See Knight, 1921, and Keynes, 

1937, for the difference between risk and uncertaintly as first defined. 

More relevant to economics, is the case when one needs to make decisions based whether or 
not future social, economical, or political events occur – say, whether or not a war breaks out.  

                                                

T P

6
P TFor the first distinction between risk and uncertainty see Knight (1921) for what became known as "Knightian 

risk" and "Knightian  uncertainty".  In this framework , the distinction is irrelevant, actually misleading, since, 
outside of laboratory experiments, the operator does not know beforehand if he is in a situation of “Kightian 
risk”.  
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Many thinkers believed that, where the future depends not only on the physical universe but 
on human actions, there are no laws – even probabilistic laws – that determine the outcome; 
one is always “under uncertainty”T P

7
P T. As Keynes(1937) says: 

By “uncertain” knowledge… I do not mean merely to distinguish what is 
known for certain from what is only probable.  The game of roulette is not 
subject, in this sense, to uncertainty… The sense in which I am using the term 
is that in which the prospect of a European war is uncertain, or the price of 
copper and the rate of interest twenty years hence, or the obsolescence of a 
new invention… About these matters, there is no scientific basis on which to 
form any calculable probability whatever.  We simply do not know!T P

8
P T  

  

Certainty, risk, and uncertainty differ not merely in the probabilities (or range of probabilities) 
one assigns to UPU, but in the strategies one must use to make a decision under these different 
conditions.  Traditionally, in the “certainty” case, one chooses the outcome with the highest 
utility. In the “risk” case, one chooses the outcome with the highest expected utilityT P

9
P T.  In the 

(completely) “uncertain” case, many strategies have been proposed.  The most famous one is 
the minmax strategy (von Neumann and Morgenstern, 1944; Wald, 1950), but others exist as 
well,T P

 
P Tsuch as Savage’s “minmax of Regret” or “Horowitz’s alpha”. These strategies require 

bounded distributions.  In the event of the distributions being unbounded the literature 
provides no meaningful answer. 

 

  THE CENTRAL PROBLEM OF RISK BEARING 

Using a decision-making strategy relevant to decision under risk in situations that are best 
described as cases of uncertainty, will lead to grief. If a shadowy man in a street corner offers 
me to play a game of three-card Monte, I will quickly lose everything if I consider the game a 

                                                

T P

7
P TQueasiness about the issue of uncertainty, especially in the case of such future events, had lead Ramsey (1931), 

DeFinetti(1937), and Savage(1954) to develop a “personalistic” or “subjective” view of probability, independent 
of any objective chance or lack thereof. 

T P

8
P T“We simply do not know” is not necessarily a pessimistic claim. Indeed, Shackle(1955) bases his entire 

economic theory on this “essential unknowledge” – that is, uncertainty - of the future.  It is this “unknowledge” 
that allows for effective human choice and free will: for the human ability to create a specific future out of 
“unknowledge” by its efforts. 

T P

9
P TThese ideas seem almost tautological today, but this of course is not so.  It took von Neumann and 

Morgenstern(1944), with their rigorous mathematical treatment, to convince the world that one can assign a 
meaningful expected-utility function to the different options when one makes choices under risk or uncertainty, 
and that maximizing this expected utility (as opposed to some other parameter) is the “rational” thing to do.  The 
idea of “expected utility” per se is already in Bernoulli(1738) and Cramer(1728), but for a variety of reasons its 
importance was not clearly recognized at the time. 
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risk situation with p(winning) = 1/3.  I should also consider the possibility that the game is 
rigged and my actual chances of winning are closer to zero.  Being uncertain where in the 
range [0, 1/3] does my real chance of winning lies should lead one to the (minmax) 
uncertainty strategy, and reject the bet. 

We claim that the practice of risk management (defined as the monitoring of the possibility 
and magnitude of adverse outcomes) subjects agents to just such mistakes.  We argue below 
that, for various reasons, risk managers cannot rule out “catastrophic events”. We then show 
that this ever-present possibility of black swan events means that, in most situations,  Risk 
managers are essentially uncertain of the future in the Knightian sense: where no meaningful 
probability can be assigned to possible future results.  

Worse, it means that in many cases no known lower (or upper) bound can even be assigned to 
the range of outcomes;   

worst of all., it means that, while it is often the case that sampling or other actions can reduce 
the uncertainty in many situations, risk managers often face situations where no amount of 
information will help narrow this uncertainty. 

The general problem of risk management is that, due to essential properties of the generators 
risk managers are dealing with, they are dealing with a situation of essential uncertainty, and 
not of risk. 

To put the same point slightly more formally: risk managers look at collection of state 
spacesT P

10
P T that have a cumulative probability that exceeds a given arbitrary number. That 

implies that a generator of a certain general type (e.g., known probability distribution: 
Normal, Binomial, Poisson, etc. or mere histogram of frequencies) determines the 
occurrences.  This generator has specific parameters (e.g. a specific mean, standard deviation, 
and higher-level moments) that – together with the information about its general type – 
determine the values of its distribution.  Once the risk manager settles on the distribution, he 
can calculate the “risk” – e.g., the probability - of certain states of the world in which he is 
interested. 

In almost all important cases, whether in the “hard” or “soft” sciences, the generator is 
hidden,.  There is no independent way to find out the parameters – e.g. the mean, standard 
deviation, etc. - of the generator except for trying to infer it from the past behavior of the 
generator. On the other hand,  in order to give any estimate of these parameters in the first 
place, one must first assume that the generator in question is of a certain general type: that it is 
a Normal generator, or a Poisson generator, etc. The agent needs to provide a joint estimation 
of the generator and the parameters. 

Under some circumstances, one is justified in assuming that the generator is of a certain 
general type and that the estimation of parameters from past behavior is reliable.  This is the 

                                                

T P

10
P TBy "state-space" is meant the foundational Arrow-Debreu state-space framework in neoclassical economics. 
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situation, for example, in the case of a repeated coin toss as one can observe the nature of the 
generator and assess the boundedness of its payoffs.   

Under other circumstances, one might be justified in assuming that the generator is of a 
certain general type, but not be justified in using the past data to tell us anything reliable about 
the moments of the generator, no matter how much data one has.   

Under even more troubling circumstances, one might have no justification not only for 
guessing the generator’s parameters, but also in guessing what general type of generator one 
is dealing with.  In that case, naturally, it is meaningless to assign any values to the 
parameters of the generator, since we don’t know what parameters to look for in the first 
place. 

We claim that most situations risk managers deal with are just such “bad” cases where one 
cannot figure out the general type of generator solely from the data, or at least give 
worthwhile estimate of its parameters.  This means that any relation between the risks they 
calculate for  “black swan” events, and the actual risks of such events, may be purely 
coincidental.  We are in uncertainty:  we cannot tell not only whether or not UXU will happen, 
but not even give any reliable estimate of what p(UXU) is.  The cardinal sin risk managers 
commit is to “force” the square peg of uncertainty into the round hole of risk, by becoming 
convinced without justification both of the generator type and of the generator parameters.   

In the remainder of this paper we present the problem in the “Gedanken” format. Then we 
examine the optimal policy (if one exists) in the presence of uncertainty attending the 
generator. 

 Four “Gedanken” Monte Carlo Experiments 
 Let us introduce an invisible generator of a stochastic process. Associated with a probability 
space it produces observable outcomes. What can these outcomes reveal to us about the 
generator – and, in turn, about the future outcomes?  What – if anything – do they tell us 
about its mean, variance, and higher order moments, or how likely the results in the future are 
to match the past?   

The answer depends, of course, on the properties of the generator. As said above, Mother 
Nature failed to endow us with the ability to observe the generator--doubly so in the case of 
social science generators (particularly in economics). 

 Let us consider four cases. In all of these cases we observe mere realizations while the 
generator is operated from behind a veil. Assume that the draws are generated by a Monte 
Carlo generation by a person who refuses to reveal the program, but would offer samples of 
the series. 

Table 1: The Four Gedanken Experiments 



 

 

8 

Gedanken Probability 
Space 

Selected Process Effect Comments 

1 Bounded  Bernouilli Fast convergence "Easiest" case 

2 Unbounded Gaussian 
(General) 

Semi-fast 
convergence 

"Easy" case 

3 Unbounded  Gaussian 
(mixed) 

Slow convergence 
(sometimes too 
slow) 

Problems with 
solutions 

4 Unbounded  Stable Pareto-
Lévy-
Mandelbrot (with 
α<1 )11 

No convergence No known solutions 

  

 

THE “REGULAR” CASE, TYPE I: DICE AND CARDS 

The simplest kind of random process (or “chance setups” as they are sometimes called is 
when all possible realizations of the process are bounded.  A trivial case is the one of tossing a 
die.  The probability space only allows discrete outcomes between 1 and 6, inclusive. 

The effect of having the wrong moments of the distribution is benign.   First, note that the 
generator is bounded: the outcome cannot be more than 6 or less than 1.  One cannot be off by 
more than a finite amount in estimating the mean, and similarly by some finite amount when 
estimating the other moments (although, to be sure, it might become a relatively large amount 
for higher-level moments) (note the difference between unbounded and infinite. As long as 
the moments exist, one must be off by only a finite amount, no matter what one guesses. The 
point is that the finite amount is unbounded by anything a priori. Give examples in 
literature—original one, preferably, E.).   

Second, the bounded-ness of the generator means that there are no extreme events,  There are 
no rare, low-probability events that any short run of the generator is unlikely to cover, but yet 
have a significant effect on the value of the true moments. There are certainly no “black 
swan” events—no outcomes whose result could destroy our previous estimates of the 
generator’s moments no matter how  much previous data we have. That is, E(UXU BnB) (the 
observed mean) is likely to be close to E(UXU) (the “real”) mean since there is no rare, 1-in-

                                                
11 More technically, Taleb shows in Taleb (2006) that the α<1 is not necessarily the cutting point. Entire classes 
of  scalable distributions converge to the Gaussian too slowly to be of any significance –by a misunderstanding 
of Central Limit Theorem and its speed  of reaching the limit. 
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1,000,000 chance of the die landing “1,000,000” – which would raise E(UXU) from the E(UXU) of 
a “regular” die almost by 1 but will not be in the observed outcomes xB1B, xB2B, … xBnB unless one 
is extremely lucky.  (Make the example more mathematical.)  

  

THE “REGULAR” CASE, TYPE II: NORMAL DISTRIBUTION 

A more complicated case is the situation where the probability space is unbounded.  Consider 
the normal distribution with density function fB2B.  In this case, there is a certain >0 probability 
for the outcome to be arbitrarily high or low; for it to be >M or <m for arbitrary M, m∈R.   

However, as M increase s and m decreases, the probability of the outcome to be >M or <m 
becomes very small very quickly.  

Although the outcomes are unbounded the epistemic value of the parameters identification is 
simplified by the “compactness” arument used in economics by SamuelsonT P

12
P T . 

A compact distribution, short for “distribution with compact support”, has the following 
mathematical property: the moments M[n] become exponentially smaller in relation to the 
second momentT P

13
P T [add references to Samuelson.].   

But there is another twist to the Gaussian distribution. It has the beautiful property that it can 
be entirely characterized by its first two momentsT P

14
P T. All moments M[n] from n ={3,4,…,∞} 

are  merely a multiple of M[1] and M[2].  

Thus, knowledge of the mean and variance of the distribution would be sufficient to derive 
higher moments. We will return to this point a little later. (Note tangentially that the Gaussian 
distribution would be the maximum entropy distribution conditional on the knowledge of the 
mean and the variance.) 

From this point on—consider Levi more? Also induction more? These are the things that we 
need to add… 

                                                

T P

12
P TSee Samuelson (1952).  

T P

13
P T A Noncentral moment is defined as dxxxnM

n )(][ !"#$ . 

T P

14
P T Take a particle W in a two dimensional space W(t). It moves in random increments ΔW over laps of time Δt. 

At times t+Δt, we have W(t+Δt)= W + ΔW + ½ ΔWP

2
P +  1/6 ΔWP

3
P + 1/24 ΔWP

4 
P+  … Now taking expectations on 

both sides: E[W(t+Δt)] = W +M[1]+ M[2]/2 +M[3]]/6+ M[4]//24, etc. Since odd moments are 0 and even 
moments are a multiple of the second moment, by stopping the Taylor expansion at M[2] one is capturing most 
of the information available by the system. 
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Another intuition: as the Gaussian density function for a random variable x is written as a 

scaling of 
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, we can see that the density wanes very rapidly as x increases, as we can 
see in the tapering of the tail of the Gaussian. The interesting implication  is as follows: Using 
basic Bayes’ Theorem, we can compute the conditional probability that, given that (x-m) 
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THE “SEMI-PESSIMISTIC” CASE, TYPE III: “WEIRD” DISTRIBUTION WITH 
EXISTING MOMENTS. 

Consider another case of unbounded distribution:  this time, a linear combination of a 
“regular”  distribution with a “weird” one, with very small probabilities of a very large 
outcome. 

For the sake of concreteness  assume that one is sampling from two Gaussian distributions. 
We have πB1 Bprobability of sampling from a normal NB1B with mean µB1B and standard deviation 
σB1B and  πB2 B= 1- πB1 Bprobability of sampling from a normal NB2B with mean µB2B and standard 
deviation σB2B.  

Assume that NB1B is the "normal" regime as πB1B is high and NB2B the "rare" regime where πB2B is 
low. Assume further that |µB1B|<<|µB2B|, and |σB1B|<<|σ B2B|. (add graph.) The density function fB3B of 
this distribution is a linear combination of the density functions N1 and N2. (in the same 
graph, here:.)  

 

Its moment-generating function, MB3B, is also the weighted average of the moment generating 
functions MB1B and MB2B, of the “regular” and “weird” normal distributions, respectively, 
according to the well-known theorem in Feller (1971)T P

15
P T. This in turn means that the moments 

                                                

T P

15
P T Note that the process known as a “jump process”, i.e., diffusion + Poisson is a special case of a mixture.The 

mean m= π B1 Bµ B1B + π B2 Bµ B2B and the standard deviation  
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themselves (µB3B, σ B3B, …) are a linear combination of the moments of the two normal 
distributions.  

While the properties of this generator and the outcomes expected of it are much less “stable” 
(in a sense to be explained later) than either of the previous cases, it is at least the case that the 
mean, variance, and higher moments exist for this generator, Moreover,  this distribution over 
time settles to a Gaussian distribution, albeit at an unknown rate. 

This, however, is not much a of a consolation when  σB2B or µB2B are very large compared to σB1B 
and µB1B, as assumed here. It takes a sample size in inverse proportion to πB2 Bto begin to reach 
the true moments: When πB2 Bis very small, say 1/1000, it takes at least 1000 observations to 
start seeing the contribution of σB2B and mB2B to the total moments.  

THE “PESSIMISTIC CASE:  NO FIXED GENERATOR 

Consider now a case where the generator itself is not fixed, but changes continuously over 
time in an unpredictable way; where the outcome xB1B is the result of a generator GB1B at time tB1B, 
outcome xB2B that of generator GB2B at later time tB2B, and so on.  In this case, there is of course no 
single density function, moment-generating function, or moment can be assigned to the 
changing generator.  

Equivalently, we can say that the outcome behaves as if it is produced by a generator which 
has no moments – no definite mean, infinite variance, and so on.  One such generator is the 
one with moment-generating function MB4B and density function fB4B – the Pareto-Lévy-
Mandelbrot distributionT P

16
P T with parametrization α<1 providing all infinite moments, which is 

a case of the stable distribution "L" Stable (for Lévy-stable).  

 

THE DIFFERENCES BETWEEN THE GENERATORS 

Suppose now that we observe the outcomes xB1B, xB2B, xB3B… xBnB of generators of type (1)-(4) 
above, from the bound dice-throwing to the Pareto-Lévy-Mandelbrot distribution.  What 
could we infer from that data in each case?  To figure this out, there are two steps: first,  we 
need to do is figure out the mathematical relation between the observed moments (E(XBnB), 
Var(XBnB), etc.) and the actual moments of the generator. Then, we need to see what 

                                                                                                                                                   

2
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T P

16
P TSee Samorodnitsky and Taqqu(1994).  It is interesting that the Pareto-Levy-Mandelbrot distribution is only 

known by its characteristic function, not its density which cannot be expressed in closed form mathematically, 
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12 

epistemology tells us about the significance of these relations to out ability to know the actual 
moments. 

 

 THE FIRST AND SECOND CASES. 

In the first and second case, the moments of the generator (e.g., EB1B(X), VarB1B(X), EB2B(X), 
VarB2B(X), and higher-level moments) can be quickly inferred from the observation of the 
actual outcomes.   

For example, the observed first moment – the observed mean E(XBnB) = (xB1B+xB2B+…+xBnB)/n – 
quickly converges to the actual mean EB1B(X) or EB2B(X) as n increases.  Same with the observed 
variance of the sample {xB1B…xBnB}, Var(XBnB), converging to VarB1B(X) or VarB2B(X).  The same is 
also true with higher-level moments.  

Let us illustrate this point—the fast convergence of the observed moments to the actual 
moments—by considering the first moment, or the mean. In the first case (the dice), the 
outcomes are bounded, so that we know that min(X)<x<max(X) for sure.  In the second case 
(the Normal distribution) the outcomes are not bounded, but their probability decreases 
drastically as they vary from the mean.   

That is, pBiB(x)*x0 quickly as x increases to extreme values both in the case of the first and 
the second generator (that is, for i=1,2).  In the first case this is due to the fact that pB1B(x)=0 for 
x<min(X) or x>max(X); in the second, because pB2B(x) decreases much faster than the 
deviation of x from the mean.   

This means that the effect of extreme values on the mean of the generator, EBiB(X) = Σ BxBx*pBiB(x), 
is negligible in both the bounded case (i=1) and the Normal case (i=2).  That is, ΣBxBx*pBiB(x) ~ 
ΣBx not an extreme valueBx*pBiB(x) for both generators.   

Consider now the data we actually observe.  Even if the low-probability extreme values of the 
generator (if such exist) are not observed at all in the outcomes xB1B, xB2B… xBnB, the 
“experimental” E(XBnB) = (xB1B+xB2B+…xBnB)/n is still converging towards ΣBx not an extreme valueBx*pBiB(x).  
This, as we said, will not differ much from the actual EB1B(X) or EB2B(X).  One does not, in other 
words, need to wait until a rare extreme event occurs, even if the possibility of such events 
exists, in order to get a reasonable estimate of the real EB1B(X) or EB2B(X) from the experimental 
E(XBnB).   

For similar reasons, Var(XBnB) will converge quickly to VarB1B(X) or VarB2B(X), and the same for 
higher-level moments, even if xB1B, xB2B, … xBnB does not include any of the extreme values that 
could occur – if any. 
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THE “SEMI-PESSIMISTIC” CASE 

Suppose now that the generator which generated our data – outcomes xB1B, xB2B,… xBnB – is of the 
third type, the “semi-pessimistic” case of a linear combination between a Normal and Poisson 
distribution. 

In this case, the extreme values of the generator are not negligible for the calculations of the 
generator’s moment.  That is since, while pB3B(x) 0 as x deviates greatly from the mean, it 
does not do so “fast enough” to make extreme values negligible.  That is, pB3B(x)*x does not  
0 as x becomes extreme.  

In such situations, EB3B(X) = ΣBxBpB3B(x)*x ≠ ΣBx not extreme valueBpB3B(x)*x.  Therefore, as long as the 
rare extreme events do not occur, the “experimental” E(XBnB) is converging towards  ΣBx not 

extreme valueBpB3B(x)*x - which might be very different from EB3B(X) = ΣBxBpB3B(x)*x.   

In other words, the rare, extreme events need to actually occur before E(XBnB) will be close to 
EB3B(X) (if then).  And similarly for Var(XBnB) vs. VarB3B(X) and the higher-level moments. 

This is seen by the fact that in such generators, the conversion is much slower. (add formula 
for the convergence in the first moment and second moment). 

Furthermore, until extreme “black swan” results actually occur, the observed outcomes of the 
second (Normal) generator would be indistinguishable from the results of the third (Normal + 
Poisson) generator.  We shall consider the implications of this later. 

 THE “PESSIMISTIC” CASE 

In the “pessimistic” case, things can be intractable.  It is not that it is takes time for the 
experimental moments E(XBnB), Var(XBnB), etc. to converge to the “true” EB4B(X), VarB4B(X), etc.  In 
this case, these moments simply do not exist.  This means, of course, that no amount of 
observation whatsoever will give us E(XBnB), Var(XBnB), or higher-level moments that are close 
to the “true” values of the moments, since no true values exist. 

 

THE PROBLEM OF INDUCTIVE INFERENCE AND ITS RELATION TO THE 
MATHEMATICAL RELATIONS DISCUSSED ABOVE 

So far, we have just described four generators and saw the mathematical relation they imply 
between the value of the estimated moments and the actual moments (if they exist).   

We now need to see how these properties affect the original question we considered: namely, 
under what circumstances can we use the data of the previous outcomes of the generator to 
establish the type of the generator and its parameters, and thus be able to predict the risk of 
future outcomes. 



 

 

14 

It should be emphasized that while these two problems – the mathematical relation between 
the generator’s true moments and the observed moments, on the one hand, and the ability to 
predict the future outcomes of the generator are closely related, they are by no means 
identical.  The first one is a purely mathematical problem.  The second is an epistemological 
problem.  

One can never conclude much about the future solely from a small specific set of outcomes, 
our “experimental data”.  In the modern literatureT P

17
P T, a corpus of knowledge, suggesting 

availability of background information is always imperative.  

For example, one cannot tell, from a million observations of a coin toss alone, that the coin 
has a certain probability of landing “heads” on the next toss.  There is nothing “in the data” 
itself that excludes, for example, the possibility that the coin will land neither “heads” nor 
“tails” the next time, but will explode like a nuclear bomb.  Despite the close mathematical 
relation between the observed and actual moments, unless we have the right “background 
information”, we will not be able to make any epistemological conclusion from the data to the 
future behavior of the generator. The reason such outcomes as “will explode like a nuclear 
bomb” are excluded is that, in most case, we have the right kind of “background information” 
to exclude it – e.g., our knowledge of physics.   

On the other hand, even if the generator is of the “pessimistic” Pareto-Lévy-Mandelbrot type 
above, the lack of mathematical relation between the observed moments and the real moments 
might not – in theory! – exclude one from making an epistemological conclusion about the 
future outcomes of the generator.  If by some miracle, for example, we have an access to an 
angel that whispers in our ear the next outcome of the generator before it occurs, then part of 
our “background information” simply includes the generator’s outcome, and we could tell 
what the outcomes would be.  

However, such cases are usually of a fantastic nature—in most cases we deal with, as seen 
below, the mathematical information is necessary, but not sufficient, to reach the 
epistemological conclusions we are interested in. 

 THE IMPLIED BACKGROUND INFORMATION AND OUR CLAIMS 

As we said we are interested here in the epistemological problem given a specific type of 
background information, which is the situation in practice when risk managers need to “show 
their stuff”.  We assume that the background information is such that:   

1. Outcomes are created by some random generator; 

2. That this random generator will continue to produce them in the future;  

                                                

T P
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P TSee for example Levi(1980), Kyburg(1974).   
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3. One does not have any independent way to estimate either the type of 
generator or its parameters except from the data of the previous outcomes, and 
that furthermore  

4. The generator can be any one of the four different types of exclusive and 
exhaustive generators discussed above. 

 

The first three assumptions are not controversial (where is this information coming from? 
Why is it agreed? Add references? E.).  The fourth one is 

Our epistemological question is:  if the background information is as above, what if anything 
can we conclude about the moments of the generator (and, hence, about its future behavior) 
from 1). the observed past behavior of the generator, and 2). This background information? 
Our practical question is: when is it the case that, indeed, the generator can be of all four 
types, or at least of the “pessimistic” type, type 3 or 4?   

We claim that: 

 1) If the generator can be or type 3 or 4 (“semi-pessimistic” or “pessimistic”), that is enough 
to invalidate our ability to conclude much from its past behavior to its future behavior; in 
particular, it makes it impossible for us to assign any specific probability to future outcomes, 
which makes the situation one of uncertainty, as claimed in the introduction above. 

2) It is precisely in situations dealt with by risk managers where the generator can be of type 3 
or 4. 

  

THE PROBLEM OF INDUCTIVE INFERENCE:  THE FIRST PART 

Let us begin, then, with the first part of the problem, the “if-then” part:  namely, under what 
circumstances we can (or cannot) say something about the moments of the the generator if we 
know (or do not know) the background something about what the generator is, or what type it 
could be.  

There are two possibilities. It might be that certain information about the moments is a 
deductive consequence of what I already know about it. For example, if I know that a 
generator’s outcomes are bound between the values a and b, I know that the first moment is 
also so bound. This is not a matter of choice or decision: to be logically consistent, I must 
accept all such consequences the background information implies about the momentsT P

18
P T.  
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induction and deduction, below. 
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More complicated is the case of induction. Even when (as we always assume) all the 
deductive consequences of the background information are known, it might be that no specific 
value for the moments emerges. In that case, we are not forced to settle on a specific value for 
them. Nevertheless, we might conclude that under the circumstances, we are inductively 
justified in assigning the mean of the generator a certain value (say, “3.5” in the “fair die” 
case), and similarly for higher moments. 

We discuss induction more specifically below, in a separate part. But before we begin this 
section, a short summary is necessary.  

As Peirce showed, this is really a epistemic decision problem. I am given background 
information about the generator (“it looks like a die of some sort is tossed”) and the previous 
outcomes (“the outcomes were 4, 4, 3, 2, 1”). I need to decide whether adding a new 
conclusion about the generator’s moments to my beliefs based on this data is justified (say, 
“the die is a fair die”, or more formally “the die’s first moment is 3.5”). 

To solve the decision problem, as in all decisions problems, one needs to consider the goal (or 
goals) one tries to achieve, and the options one can choose from.  To choose correctly means 
to choose the option that best achieves one’s goals. Decision-making goals can be anything 
from winning a nuclear war to choosing a good restaurant The goals of inductive inference is 
(as James showed, below) to seek new information while at the same time avoiding error. 
Similarly, the available options can be anything from launching a Trident II missile to driving 
to the restaurant.. In inductive inference, the options are adding new claims to one’s beliefs—
in this case, claims about the value of a random generator’s moments. 

These two goals are in tension: the more information I accept, the more likely it is that one 
will mistakenly include error. The question is, what new claims give me the most information 
for the least risk if I add them. The result of the inductive inference—the solution of the 
decision problem—is adding to one’s beliefs the claim that best balances these goals. Adding 
this claim is the inductive inference justified under the circumstances. 

Note that the null claim—“add no new information”—is always available. If the optimal 
option is the null option, it means that the justified inductive inference is no inference. In our 
case it would mean that we are not justified in concluding anything about the generator’s 
moments from our background information and past outcomes. As we shall see, this is often 
the case. 

Note, further, that mere high probability, e.g. low risk of error, is not itself good enough for 
acceptance. Consider a lottery with a million tickets: the probability or each ticket winning is 
1/1,000,000; but if we accept that this low probability, in itself, is enough to conclude that 
ticket n will not win, we reach the absurd conclusion that no ticket will win.  

In what follows, we need to formalize and quantify the decision situation faced by the agent. 
For this we use the system developed by Levi. Other formalizations of epistemic decision-
making in inquiry exist; in fact, one of the authors (Pilpel) is investigating the differences 
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between these systems. But in the cases of risk management described below, all of them will 
recommend the same (pessimistic) conclusion.  

 

TYPE #1 AND #2 GENERATORS 

Suppose that an angel came to us and told us the following:  “the phenomena which you 
measured so far, with results xB1B, xB2B, … xBnB, is produced by a generator which is bound (type 1 
above) between a and b, or which gives a normal distribution (type 2 above). However, I will 
not tell you what the mean, variance, or higher moments are; this you need to figure out from 
that data.”  Could we do it?    

TYPE 1 GENERATORS: FORMAL TREATMENT 

To answer, let us put things more formally, using Levi’s notation (Levi, 1980, and also 
below). To simplify things, let us fix a and b as 1 and 6, and first consider a bounded 
generator (Type 1) with a finite number of outcomes—say a tossed die with outcomes {1, 2, 
3, 4, 5, 6}. John, at time tB0B, has to make a decision about the properties of this random 
generator.  What can we say about this situation, epistemically? 

 

THE CORPUS OF KNOWLEDGE: BACKGROUND INFORMATION AND 
EXPERIMENTAL DATA 

First of all, John has a corpus of knowledge (or belief), KBJohn,t0B. It includes the following 
information: 

1) Background information John knows about the generator. As the angel said 
to John, KBJohn,toB includes: 

a) The outcomes of the dice throws are governed by a random generator 
defined by a probability function X:{1,2,3,4,5,6}[0,1].  

b) The outcomes of the generators are always one of the set  {1,2,3,4,5,6}. 

c) The generator’s mean (E(X)), variance (Var(X)), and higher-level moments 
are fixed, both in the past and in the future.  

d) John knows the laws of statistics, methods of statistical inference, and so 
on, e.g., the central limit theorem, etc. 

2) John’s corpus of knowledge KBJohn,t0B also includes the outcomes of the 
previous trials up to time tB0B: 
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1) The first toss of the die had outcome xB1B∈{1,2,3,4,5,6}. 

2) The second toss of the die had outcome xB2B∈{1,2,3,4,5,6}. 

3) … 

4) …. 

n) The nth toss of the die (the last one before time tB0B) was xBnB∈{1,2,3,4,5,6}. 

We also assume something else of significant importance: that n is large enough for us to use 
the normal approximation for E(XBnB). We shall see the importance of this later. 

3) The result of 1-n above and John’s knowledge of statistics is that, of course, 
John has estimates of the first, second, and higher moments in his corpus: 

a) The estimated first moment of X given the first n tosses (E(XBnB)) is 
(∑BiBxBiB)/n. Note that this itself is a random variable, dependant on both the 
properties of X and on n. 

b) The estimated second moment given the first n tosses (Estimated variance, 
or Var(XBnB)) is the square of the sample’s standard error, or (∑BiB(xBiB-
E(XBnB))P

2
P)/(n-1). 

c) … and so on for higher-level moments. 

4) Finally, John’s corpus of belief includes (by definition, as seen below) all 
the deductive consequences of the above information. In particular, that 
1≤E(X)≤6, 0≤Var(X)≤25 (=(6-1)P

2
P) (actually less, but we can afford to be 

generous here), etc. 

5) However, John’s corpus does not limit where E(X) can be deductively any 
more than that. It is not logically follow from the outcomes and the 
background information that E(X) is more specific than [1,6]. 

 

John is engaged, at time t B0 B, in solving a decision problem: given the information above in 
KBJohn,t0B, can he give a reliable estimate of the moments of the generator X—and thus, of its 
future behavior? To simplify, once more, we shall consider only the case of John estimating 
the first moment, E(X).  

 

THE DECISION PROBLEM: THE OPTIONS 

To repeat, giving a reliable estimate of E(X) is another name for saying that John is justified 
to infer that E(X) is of a certain value—that it is a legitimate inductive inference. This is a 
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decision problem; we need to first consider what options for inductive inference exist—that 
is, between what estimates of E(X) John can choose; then, to decide which one (if any) of 
those John should choose. 

What are the options available? This depends both on what is deductively excluded by KBJohn,t0B 
and the goals that interest John. In this case, we know that: 

1) KBJohn,t0B� 1≤E(X)≤6. Whatever value John chooses as his estimate of E(X), 
it must be between 1 and 6 on pain of logical inconsistency.  

2) From the statistics in KBJohn,t0B one knows that the estimate “E(X)=E(XBnB)” is 
the only one that is free from an built-in bias.  

 

Now, we can limit the number of options John considers accepting or rejecting to a finite 
number (even to two). For a fixed εB0B, we can consider the two options as whether |E(X)-
E(XBnB)|<ε B0B or not (HB0B). On this view, there are four options altogether: to accept that E(X) is 
at most ε B0B from the observed E(XBnB), to accept that E(X) is ε B0B or more from the observed 
E(XBnB), to accept both (which means that John decides to add information to KBJohn,t0B that 
makes his beliefs inconsistent, by adding HB0B∧~HB0B) and to accept neither (that is, to add 
nothing to KBJohn,t0B, by “adding” the tautology HB0B∨~HB0B)   

However, there is no need to a priori limit the number of possible options. There is a natural 
set of potential basic options, mutually exclusive and exhaustive (as they must be—see Levi, 
1980), that are the most specific possible: namely the set {UBxB = BdefB “E(X)=x”| 1≤x≤6}.  

In this case, John has a total number of 2P

א
P options: those that are defined by any sort of 

(measurable) subset of [1,6]. For example, John might decide that the strongest claim that he 
accepts is that E(X) is between ½ and 1 or between 4 and 5; that is, John accepts the infinite 
disjunction (∨ B0.5<j<1BUBjB)∨(∨ B4<j<5BUBjB) as true, but does not accept anything more specific. Note 
that the previous “basic” option HB0B is a non-basic one, the disjunction ∨ BE(Xn)-ε0<j<E(Xn)+ε0BUBjB.  

In particular, John still has the weakest option—accept only the disjunction ∨ B1≤j≤6BUBjB, that is, 
that 1≤E(X)≤6, which is already in KBJohn,t0B and therefore a null addition; and there is a single 
strongest option—accepting the disjunction ∨ B� B, that is, to accept that none of the basic 
hypotheses UBjB are true. This means to accept that E(X)∉[1,6], in contradiction with 
information already in KBJohn,t0B that it is; that is, the strongest option is to add a contradiction. 

 

THE DECISION PROBLEM: RISK OF ERROR 

The next issue to consider in the decision problem is the risk of error by accepting any of the 
options, and, in particular, the basic options. The risk of error, from the agent’s point of view, 
is the probability that it is wrong.  
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Since we are dealing with the infinite case, we must deal not with probability itself (for every 
basic option, p(UBjB) = p(E(X)= exactly j) is 0), but with the density function, f, which in turn 
determines the probability for any measurable set. Can John estimate this density function? 
The laws of statistics tell us that John can do so.  

UThe calculations themselves can be found in any statistics textbook. Here is a short sketch: for 
a “large enough” n (n>30), the random variable XU P U

*
U P B UnU B U =U B UdefU B U (∑ U B Uj=1 to nU B UxU B UiU B U)/n behaves roughly 

like a normal variable (due to the central limit theorem) with mean E(X) and standard 
deviation of UσBXB/√n. We do not know what σBXB itself is, of course (the generator’s moments are 
hidden from us) but, since σ BXB is bounded from above—if by nothing else, then by sqr((6-
1)P

2
P)=5, in this case—there is a known upper limit to the standard deviation of XP

*
P BnB is for 

every n. So, for every n, the laws of statistics tell John that he can assume that XBnB’s density 
function is roughly that of a normal random variable with a mean E(X) and (maximal) 
standard deviation of (in this case) 5/(√n).  

(For smaller n, one needs to use Gossett’s “Student-t” distribution, but we can assume n is 
large enough. Also that the normal approximation of XP

*
P BnB is unbounded—it can go to, say, -

1000 or +1,000,000—while the “real” XP

*
P BnB is the observed average of n die tosses, and must 

be bound between 1 and 6; but, again, for a “large enough” n the tails will be so close to 0 as 
to make no difference. Finally,  one can estimate σBXB by using s = sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-

1)], the sample’s standard error, which would usually be much smaller than 5; but we can 
afford to take the “worse case scenario” here.)  

What, then, are the allowable probability functions, QBJohn,t0B, John can consider (for a given n) 
as possibly representing the actual density function of the probability of the real E(X) being at 
a certain point around the observed E(XBnB)? It is a family of normal distributions with mean 
E(XBnB) and maximal variance 5/√n. So, the density functions are:  

Allowable density functions for John at time tB0B: QBJohn,t0B = B  B{f Bv B≡N(E(XBnB),v)| 0<v<5/√n}.  

Note that the agent can use the laws of statistics to reach conclusions about the probabilities 
partially because the original random variable X describing the generator does not change wth 
time. Therefore, the risk of error John takes (given a fixed density function f and n) if John 
accepts the infinite disjunction (∨ B0.5<j<1BUBjB)∨(∨ B4<j<5BUBjB) as true (that is, adds it to KBJohn,t0B) but 
does not accept anything more specific, is 1-(∫B[0.5,1]B f(x)dx+∫ B[3,4]Bf(x)dx), that is, 1-the 
probability of it being the case that E(X) is in that range.  

 

THE DECISION PROBLEM: INFORMATIONAL VALUE 

Now we come to informational value. What informational value should be assigned to every 
UBiB? 

According to it (Levi 1980) the informational value of an hypothesis, Cont(H), is inversely 
correlated with a probability function, M(H): the higher the “probability” of an hypothesis, 
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the less information it carries. This must be so, if we want certain basic properties of 
information value to hold: say, that the informational value of a tautology is the minimal 
possible one, or that the Cont(A∨B) ≤ Cont(A), Cont(B) ≤  Cont(A∧B).  

Note that: 

1) M is not the same as the probability function that the agent assigns to the 
hypothesis being true, unlike what Popper (1950) and others believed. On 
the view advocated by Peirce, James, and Levi, informational value is not 
merely a way to say that something is improbable; probability and 
informational value are distinct characteristics.  

2) The inverse proportion between M(H) and  Cont(H) can take several forms: 
say, Cont(H)=BdefB1/M(H), Cont(H)=BdefB-(log(M(H))), etc. Levi prefers the 
simple Cont(H)=1-M(H), for reasons not crucial to this discussion (for the 
record, in this way his version of information content mimics in certain 
respects Savage’s “degrees of surprise”, see Savage (1953), Levi (1980).)  

 

There is here a natural suggestion: that every UBiB have an equal informational value: it is 
precisely as informative, or as specific, to say that E(X)_is 0.453 as it is to say that it is 0.991.  
That means that the M-function, as well, must be “the same” for every UBiB. Since we are 
dealing with the infinite case, any M-function would give probability 0 to every UBiB, so we 
need to look at the density function: we wish the density function m of the M-function to be 
the constant one. In this case, we have m≡0.2 over [1,6].  

On this view, the informational value of every hypotheses H is 1-M(H), that is, 1-0.2*(H’s 
measure). For example, if John accepts the infinite disjunction H=(∨ B0.5<j<1BUBjB)∨(∨ B4<j<5BUBjB) as 
true (that is, adds it to KBJohn,t0B) but does not accept anything more specific, John gains 
informational value of Cont(H) = 1-M(H) = 1-(∫B[0.5,1]B0.2dx+∫ B[3,4]B0.2dx).  

To illustrate, here is a graph of the m-function and a few of the potential density functions: 
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Figure 1: The agent's m-- and p-functions 

 

THE DECISION PROBLEM: THE OPTIMAL INDUCTIVE STRATEGY 

 

THE DECISION PROBLEM: STAGE 1: THE FORMULAS 

As always, we follow Levi(1980). Levi recommends to accept an hypothesis where the 
information value (defined by Cont(H), etc.) is big enough to justify the risk of error (defined 
by p(H), etc.)  

How does one determine what is a “small enough” risk of error or a “large enough” 
informational value? Levi (1980) concludes that the way to go is as follows: 

Rejection Rule: if UBiB is a basic option, p(UBiB) is the credal probability (e.g., the probability the 
agent assigns to UBiB being true) of UBiB, and M(UBiB) the probability function determining its 
informational value Cont(UBiB) =BdefB 1-M(UBiB), the agent should reject UBiB (e.g., add ~UBiB to their 
corpus of knowledge) if and only if  p(UBiB)<qM(UBiB), where 0<q<1 is the agent’s “boldness 
index”. 

Let us consider this for a moment. To accept hypothesis UBiB is the same thing as rejecting ~UBiB; 
and Cont(UBiB)=1-M(UBiB)=M(~UBiB). For a fixed p function and fixed q, the higher the 
informational value Cont(UBiB), the higher M(~UBiB), and the more likely that ~UBiB will be 
rejected—that is, UBiB accepted. That is, the higher the informational value of UBiB, then—ceteris 
paribus—the more likely it is to be accepted. 
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Similarly, On the other hand, for a fixed Cont(UBiB) and q, the higher p(UBiB), the lower p(~UBiB) = 
1-p(UBiB). This means that it is more likely that p(~UBiB) will be lower than qM(~UBiB); that is, ~UBiB 
will be rejected, or UBiB accepted. The more probable UBiB, the more likely it is (ceteris paribus) 
to be accepted. 

Now, what is q? This depends on the agent and the situation. For a fixed p and M functions, 
the higher q is, the more options are rejected, and the smaller (and more specific) the number 
of remaining options. The agent is therefore bolder in accepting the risk of error for 
information. The lower q is, the less options are rejected, and the larger (and less specific) the 
number of remaining options.  

There is no a priori reason to fix q at a specific number. However, as Levi shows, q should 
never be 0 (let alone below), since this would mean the agent might hesitate and not accept 
options even if they carry no risk of error (e.g., they have probability =1). And q should never 
be 1 (or above), since that would mean the agent might accept to their beliefs options that 
carry a risk of error for sure (e.g., have probability = 0). 

In the infinite case, as in here, one cannot use the probability functions themselves, since for 
every basic option UBjB, p(UBjB) = M(UBjB) = 0, and therefore for every q the inequality does not 
hold (it is 0<0). The natural extrapolation (see also Levi, 1980, esp. 5.10, 5.11) is, in this case, 
to consider the density functions: to reject UBjB for 1≤j≤6 if and only if f(j)<qm(j), that is, if and 
only if f(j)<0.2q. 

This means that, for a specific q and f, there is a “cutoff point εB0B, where f(E(XBnB)-ε B0B) = 
f(E(XBnB)+ε B0B) = 0.2q; John  should rejects the tails re the value of f is below 0.2q, that is, the 
agent adds the information that the value of E(X) is between E(XBnB)-εB0 B to E(XBnB)+εB0 B to KBJohn,t0B.  

 

THE DECISION PROBLEM, STAGE 2: E-ADMISSIBLITY AND SUSPENDING 
JUDGMENT 

Things, however are not that simple, for two reasons: first, John has more than one possible 
density function, and they do not always give the same recommendation. Second, once it is 
decided by John what he should add to his belief given a specific density function, the 
question is: which one of those to actually recommend? 

An option that is recommended by a specific probability function the agent considers 
legitimate is called by Levi an E-admissible option. In this case, the set of E-admissible 
options for John are: 

{Add to KBJohn,t0B that (E(XBnB)-ε(f)≤E(X)≤E(XBnB)+ε(f)| for every f∈QBJohn,t0 B, ε(f)=Bdef Bdistance from 
E(XBnB) where f(ε(f))=0.2q} 

It is easy to see that this set is a set of stronger and stronger options, depending on what the 
variance of the allowable density function is, since the set of density functions is the normal 
density functions with mean E(XBnB) and standard deviation from 0 to 5/√n, as said above. This 
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means that if f is a “spread out” function (with a relatively high variance), ε(f) is relatively 
large and John only accepts, given that f, that the true value of E(X) is between relatively far 
apart E(XBnB)-ε(f) and E(XBnB)+ε(f). if f is a “concentrated” function (with a low variance), ε(f) is 
correspondingly smaller and John accepts a stronger claim—that the real value of E(X) is 
within a narrower range.  

So much for the E-admissible options. Which one to choose? Levi suggests (Levi, 1980) a 
rule for ties: 

Rule for ties: If an agent has two E-admissible options EB1B and EB2B, and it is reasonable to 
suspend judgment between them (accept EB1B∨EB2B)—that is, in particular, that EB1B∨EB2B is itself E-
admissible—then one should choose the E-admissible EB1B∨EB2B over either the E-admissible EB1B 
or the E-admissible EB2B. 

In this case, all the possible options are arranged by logical strength from the weakest (accept 
only that E(X) is between E(XBnB)-ε to E(XBnB)+ε when ε is when the density function 
N(E(XBnB,5/√n)=0.2q) to the strongest (accept that E(XBnB)=E(X) exactly; that is, to consider the 
limit case where the normal distribution has variance 0). Of any two options, one implies the 
other, so that their disjunction is simply the weaker option. The rule for tie tells us to take the 
total disjunction—in this case, the weakest possibility. So, in sum, John accepts that: 

 

John’s Acceptance, stage 1: Adds to KBJohn,t0B the fact that E(XBnB) is between E(XBnB)-ε and 
E(XBnB)+ε when ε is when the density function N(E(XBnB,5/√n)=0.2q. 

 

THE DECISION PROBLEM, STAGE 3: ITERATION 

However, we are still not done. Now that John accepted certain claims to be true, says Levi, 
John needs to iterate the inductive inference. John’s new K, KBJohn,t1B, is the deductive closure 
of KBJohn,t0B and the disjunction ∨ Bx|E(Xn)-ε0≤x≤E(Xn)+ε0B(“E(X)=x”). Or, in Levi’s symbolism, John 
expanded his corpus to a larger one, holding more beliefs. In Levi’s symbolism, if HB1B = Bdef 
B∨ Bx|E(Xn)-ε0≤x≤E(Xn)+ε0B(“E(X)=x”): 

 

KBJohn,t1B = KBJohn,t0P B

+
P BH1B. 

 

John’s probability functions, in QBJohn,t0B, also change:  also change: they are now the set of 
conditional probabilities, given that John added the disjunction that E(X) is between E(XBnB)-ε 
and E(XBnB)+ε to his beliefs. (Levi calls this the conditionalization commitment. See Levi, 
1980.) That is, John’s new probability functions at time tB1B, is: 
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QBJohn,t1 B = {p| p(x) = q(x|H1), for every q∈QBJohn,t0B} 

 

The informational value function also changes. It becomes determined by the conditional, 
new M-function, which is 0 outside [E(XBnB)-ε B0B, E(XBnB)+ε B0B] and 1/2εB0B inside this interval.  

 John now has a stage 2 decision problem: which, if any, of the options UBxB= “E(X)=x”, for 
x∈[E(XBnB)-εB0B, E(XBnB)+ε B0B], with these new probability and content functions, should he reject?  

As before, one does the calculations and sees that one should reject just those UBxB’s where the 
weakest conditional density function, N(E(XBnB), 5/√n) given that x is between E(XBnB)-ε and 
E(XBnB)+ε, is below qm(x)—that is, q(1/2εB0B).  

Possibly some more hypotheses will get rejected. If there are some, then John needs to yet 
again add more information to his beliefs—add to KBJohn,t1B the fact that E(X) is not farther 
away from E(XBnB) thant some ε’, (0<ε’<ε). Then, John needs once more iterate—
conditionalize QBJohn,t2B based on QBJohn,t1B given the new rejections, make M defined by the new 
m≡1/2ε’, and so on.  

This process continues indefinitely. John solves a series of decision problems given KBJohn, t0B, 
KBJohn, t1B, KBJohn, t2B, … each saying that E(X) is at most ε, ε’, ε’’, ε’’’ … away from E(XBnB), with 
the conditional QBJohn, t0B, QBJohn, t1B, QBJohn,t2B, …, each based on the previous one and the new 
information added, with the new m density function being 1/5 (the original one), 1/2ε, 1/2ε’, 
1/2ε’’, 1/2ε’’’ …, etc. 

It can be shown that eventuall—and perhaps even the first time—John will reach a certain 
KBJohn,t*B, QBJohn,t*B, with the strongest claim in KBJohn,t*B being that E(X) is at most 0<ε P

*
P away from 

E(XBnB), m being 1/2ε P

*
P, where the recommendation is not to reject any more hypotheses. John, 

as it were, rejected all the he could reasonably reject.  

 

JOHN’S FINAL DECISION 

The final recommendation—the strongest—is: 

John’s Acceptance, stage 1: Adds to KBJohn,t0B the fact that E(XBnB) is between E(XBnB)-ε P

*
P and 

E(XBnB)+ε P

*
P when 0<ε P

*
P≤ε, ε being the value where  John’s original density function, the 

(unconditional) N(E(XBnB),5/√n)=0.2q. 

 

DISCUSSION 
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The result of the inductive decision problem is “John’s acceptance”, above. That is, induction 
recommends that John, in this situation, and for a given n and q, accept that E(X) is in the 
range described by “John’s Final Decision”. 

In practice, this means two things: 

1) Unless q is very small, then for any n that is not too small (say, n≈30 or so, 
or higher, as we assume) the range that John accepts as possible value for 
E(X) is relatively small, even if one uses the maximum possible estimation 
of XP

*
P BnB’s standard deviation, that is, 5/√n. 

2) If one uses the standard estimation of XP

*
P BnB’s standard deviation (the 

standard error), then ε, even after only one iteration, will be even smaller, 
since the weakest (most spread out) density function John considers in the 
first case will be N(E(XBnB), s/√n), with s the standard error, not N(EXBnB), 
5/√n), and s<5—and thus N(E(XBnB), s/√n) would reach 0.2q faster (closer to 
E(XBnB). 

3) Successive iterations of the decision problem might lead the agent to reject 
even more hypotheses, eventually settling on the claim that E(X) is in 
[E(XBnB)-ε P

*
P, E(XBnB)+ε P

*
P], with 0<ε P

*
P≤ε. 

 

(2) and (3), in this case, are almost unnecessary, however. For a reasonably large n—one large 
enough to use the normal approximation for XP

*
P BnB—even doing only one iteration of the 

decision process and using the maximal possible size of XP

*
P BnB’s standard deviation would 

usually significantly limit what is accepted.  

In short, So when one has a type 1 generator, John can tell, pretty quickly, quite a bit about 
the value of the generator’s moment, E(X). John is justified in inductively accepting that it is 
within a range, ε, that is small to begin with in most circumstances (as 1 above says) and gets 
smaller quickly as the number of observations increases.  

Note, also, an important point. First, obviously information about the previous outcomes of 
the generator is essential for the agent to reach the conclusion. But the law of statistics could 
only be used because we have background information about the type of generator we have 
here—a “well-behaved” one.  

TYPE 2 GENERATORS: NORMAL DISTRIBUTION 

BACKGROUND INFORMATION  

Type 2 generators are similar to type 1 generators, as we shall see, with a few difference. 
Again, to fix the discussion, let us presume that the generator is normal, with (actual) 
moments E(X), Var(X), etc. As before, let us assume that John is trying to estimate the first 
moment, or what E(X) is. 
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The background information is very similar to the one with the case of the bounded 
distribution, of course with the change that John knows that the generator is normal, not 
bounded. In particular, John knows that E(X) and Var(X) are fixed and will remain so in the 
future, and the laws of statistics. John also knows, due to these laws, that the (same) estimates 
(E(XBnB), Var(XBnB)) are the only ones of the generator’s moments that do not have a built-in 
bias. 

When it comes to the data, John knows what the past outcomes (xB1B, … xBnB) of the generator 
were. As before, let us consider the first moment E(X) and John’s estimation of it.  

 

DIFFERENCES FROM BOUNDED DISTRIBUTION—AND WHY IT DOESN’T 
MATTER IN THIS CASE 

There are two things that can ruin it for John. In the bounded case, there were no extreme 
events, first, and σBX B was bounded from above by a known quantity. In the normal case, it 
could be that an extreme event would be observed in xB1B, … xBnB, and significantly “throw off” 
E(XBnB). Or, if σBXB is extremely large, it might take a very large n to get E(XBnB) to converge to 
E(X). In both cases, even for a large n, E(XBnB) could still be significantly different from E(X). 

Consider, however, what we are trying to achieve in the first place. We are not claiming that 
all “well behaved” generators—e.g., all normal distributions—can be easily “worked on” in 
practice, no matter what their properties or what the outcomes in the past happened to be. If 
the normal distribution has a very large variance, it will indeed take a lot of time for that 
pattern to emerge. If an extreme 10-σ event dis in fact occur, the estimate E(XBnB) will be off 
from E(X) for a while.  

But such occurrences are observable: John will see them occurring in the outcomes, and know 
to be care in reaching conclusions about the future. Our problem is not with the “bad” 
generators (large σBXB) or “bad” outcomes (10-σ events) that wear their “badness” on their 
sleeves, that is, in the outcomes already observed. We are concerned here with exactly the 
opposite: what we can say about a generator when it is assumed that the outcomes do look 
good—that is, when σBXB is small and no extreme events occured in the past.  

So we can assume that the outcomes do “look good”: that σ BXB is relatively small and that no 
10-σ events occurred. We want to know: given these outcomes, what can the agent deduce, if 
anything, about the qualities of the generator? In this case, quite a lot.  

As above, the random variable XP

*
P BnB behaves normally, with Urandom variable XU P U

*
U P B UnU B U =U B UdefU B U (∑U B Uj=1 

to nU B UxU B UiU B U)/n behaves roughly like a normal variable (due to the central limit theorem) with mean 
E(X) and standard deviation of UσBXB/√n. We do not know what σBXB itself is, of course (the 
generator’s moments are hidden from us) but we can estimate it, since one can estimate σ BXB by 
using s = sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)], the sample’s standard error. This means that we can 

assume (presuming, again, that n is “large enough” as above) that the density function of XP

*
P Bn B 
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is N(E(X), sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)]/√n). This is a Normal distribution that, as n 

increases, becomes more and more “centralized” since its σ0 as fast as 1/√n.  

In this case, then, John has one probability function that determines how probable it is that the 
actual E(X) is within a certain range of the observed E(XBnB): 

 

John’s density function, f: N(EBnB(X), sqr[(∑Bj=1 to nB(xBj B-E(X BnB)) P

2
P/(n-1)]/√n).  

 

(Of course, we could have used this technique to minimize the set of allowable probability 
functions in the bounded case, as well. But we deliberately did not, to show that even if we do 
allow many probability functions that create a “worst-case scenario” in the bounded situation, 
John can still tell us much about the generator’s moments. It also gave us a way to illustrate 
the rule for ties and E-admissability and to the iteration process, which will be important later 
on.) 

 

INFORMATIONAL VALUE: SOME COMPLICATIONS 

Assigning an M-function (and therefore an informational value function) is a bit more 
complicated this time. M’s density function cannot be the constant function m whose integral 
over the possible range—(-∞, +∞)—is equally to 1, since there is no such function (the 
integral is 0 for m≡0 and diverges otherwise). There is, simply put, no way for an agent to 
assign “equal informational value” to “E(X)=x” for every x∈�  and still have the 
informational value be based on a probability function. 

What, then, should M be? There are several possibilities. The one we use—due to our concern 
with “extreme events”—is as follows. Consider some large LB0B, and the range [E(XBnB)-LB0B, 
E(XBnB)+LB0B]. There is an infinite number of hypotheses of the value of E(X) within this range 
(namely, UBxB=BdefB “E(X)=x” for every x∈[E(XBnB)-LB0B, E(XBnB)+LB0B], and two additional 
hypothesis: UP

-
P=BdefB “E(X)<E(XBnB)-LB0B”, and UP

+
P=BdefB “E(XBnB)+LB0B<E(X)”. The M-function that 

determines the content function will give both of these hytpotheses some the hypothesis UP

*
P 

some probability, p P

-
P and p P

+
P; we can assume they are the same, pB0B.  

We can be careful and assume that, first, LB0B is large (relative to the standard error of the 
sample, s)—say, 10s in length; the reason is that we want these hypotheses to represent 
extreme possible values of E(X). We also assume that UP

-
P and UP

+
P are very informative—that 

is, that pB0B is very small. Within [E(XBnB)-LB0B, E(XBnB)+LB0B], we assume that M is determined by 
the usual, fixed density function m; only this time its integral of the 2LB0B integral isn’t 1, but 1-
sp B0B. So John’s M-function is defined as: 
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M(UP

+
P) = M(UP

-
P) =  pB0B; m≡(1-2pB0B)/2LB0B over the range [E(XBnB)-LB0B, E(XBnB)+LB0B]. 

 

THE DECISION PROBLEM 

As usual, the agent should reject an hypothesis U if and only if p(U)<qM(U)—or, in the case 
of point hypotheses, use the density functions of p and M, repsectively: reject the hypothesis 
U if and only if f(U)<qm(U).  On this view, we have: 

1) Reject UP

-
P if and only if p(UP

-
P)<qM(UP

-
P): reject UP

-
P if and only if ∫B-∞ to E(Xn)-

L0B[N(EBnB(X), sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)]/√n)]dz <qpB0B. 

2) Reject UP

+
P if and only if p(UP

+
P)<qM(UP

+
P): reject UP

+
P if and only if ∫BE(Xn)+L0 to 

+∞B[N(EBnB(X), sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)]/√n)]dz <qpB0B 

3) Reject UBxB for x∈[E(XBnB)-LB0B, E(XBnB)+LB0B] if and only if f(UBxB)<qm(UBxB), that is, if 
and only if the value of the normal curve, N(EBnB(X), sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-

1)]/√n)]<q(1-2pB0B)/2LB0B. 

 

Let us consider the possibilities. Suppose as above that LB0B is large and that p B0B is small. 
Nevertheless, unless p B0B or q are very small indeed, the ∫B-∞ to E(Xn)-L0B[N(EBnB(X), sqr[(∑Bj=1 to nB(xBjB-
E(XBnB))P

2
P/(n-1)]/√n)]dz is going to be far smaller than p B0Bq, since it is the “tail end” of a normal 

distribution that is many standard deviations away from the mean. So both UP

-
P B Band UP

+
P will be 

rejected. 

Now consider the middle case (3). What we have here is precisely the same situation as in the 
“bounded” case—with the small difference that the m-function is somewhat smaller than the 
m-function in the bounded case over the same range, since m≡(1-spB0B)/2LB0B and not simply 
1/2LB0B, for m must account for the possibility of UP

-
P and UP

+
P.  

We know how to solve this problem. In fact, it is even easier, since we have a fixed 
probability function and not a set of such functions. Following the exact same steps as in the 
bounded case, we get that, after the first iteration: 

 

John’s first step: John should reject UP

-
P, reject UP

+
P, and those hypotheses “E(X)=x” in the 

range [E(XBnB)-LB0B, E(XBnB)+LB0B] such that f(x)<qm(x), or N(EBnB(X), s/√n)<q(1-2pB0B)/2LB0B, when s 
is the standard error, that is, sqr[(∑Bj=1 to nB(xBjB-E(XBnB))P

2
P/(n-1)]. In other words, John should 

accept into KBJohn, t0 B the claim that E(X)∈[E(XBnB)-ε, E(XBnB)+ε], when ε is where the density 
function N(EBnB(X), s/√n)=q(1-2pB0B)/2L B0B. 
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As before, even in this first step, if n is large enough for XP

*
P BnB to use the normal approximation 

in the first place, ε will be small. And, in addition, for the same reasons as above, it might be 
that further iterations will allow John to reject even more hypotheses, and accept: 

 

John’s Final Inductive Conclusion: John should accept that E(X)∈[E(XBnB)-ε P

*
P, E(XBn B)+ε P

*
P], 

when 0<ε P

*
P≤ε, ε being the value where the (original) density function of the probabilities, 

N(EBn B(X), s/√n)=q(1-2pB0B)/2LB0 B. 

 

We see, then, that even if the generator is unbounded, John can usually justifiably conclude 
that its E(X) is within a narrow range, as long as the number of observations is large enough 
to apply the usual laws of statistics (e.g., the assumption that XP

*
P Bn B is normal). The mere fact 

that the generator’s moment E(X) could be any value, including a very large one, does not 
require John to take that possibility seriously. And the same, as before, holds mutatis 
mutandis for higher-level moments of the generator. 

TYPE #3 GENERATORS – PART 1. 

The problem is that in most cases, the agent does not know that the generator is of type I or 
type II. The agent so assumes, but for no better reason than the fact that it is easy to reach 
seemingly “exact” results with such an assumption. 

Suppose, for example, that so far the daily change in a stock’s price have been limited to the 
range between 0 and 10 points. Is there any reason to suspect that it will not move 1000 points 
one way or the other in the future? If we knew the generator that was producing the stock’s 
movements was normal, perhaps. But often we do not know it.  

Suppose that an angel told us:  “the phenomena you are observing is generated by a generator 
of type #3.  It is a combination of a “regular” Normal distribution and a Normal distribution 
that gives us very large results with very low probabilities.  I will not tell you what the mean, 
variance, or other moments of this generator are, however.  You will have to figure them out 
from the data.” What could we say about the mean, variance, and higher moments of this 
generator by looking at the data?  Very little indeed – at least as long as no catastrophic 
“black swan” event had in fact occurred.   

The reason is that in the case of such a distribution, most of the value of the moments comes 
from the rare and improbable “black swan” events that are due to the extreme Normal 
distribution, and not the regular and non-catastrophic events that are due to the Normal 
distribution.  As long as no such catastrophic events occurs, we only know a “negative” point:  
that the observed moments E(XBnB), Var(XBnB), etc. are UnotU close to the actual moments E(X), 
Var(X), etc. But that is all we know, no matter how much (non-catastrophic) data we have.  
We cannot say anything about what the size of the difference is until we actually observe such 
catastrophic events.  
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Let us put this in more formal epistemic form. Again, let us presume that John wishes to 
evaluate what E(X) is. And, once more, consider what John knows.  

From the background information, John knows what the outcome of the generator so far has 
been. John also knows the laws of statistics. Furthermore, John knows that the generator is of 
the form X = (1-p)X’+pX”, where E(X’)<<E(X”) and p<<1. But John does not know what p 
is, or what E(X’), E(X”) are. 

In addition, John knows that no extreme events occurred. That is, John knows that all the 
outcomes so far have been from X’. Can John estimate E(X)? 

The answer is negative. To estimate E(X), the agent needs to do two things: 1) estimate p, 
given that no events from X” occurred, and 2) estimate E(X”). While p can be estimated, in 
fact, the fact that we have no information about about E(X”) precludes more deliberate 
information.  

How does John estimate p? Let us ignore the values of the outcomes and consider a 
simplification: the outcome is either due to generator X’ (with probability 1-p) or due to 
generator X” (with probability p). To help out John, and simplify the calculation we will 
assume that he knows (by psychic means, perhaps) whether an outcome is from X’ or X”. The 
question is: what is p? 

 

STEP 1: EVALUATING p 

John, here, has an obvious set of options (p from 0 to 1), with an obvious M-function 
(namely, m≡1). John has a set of outcomes of length n which we know produces the p event 
exactly 0 times. For every p, this means that the probability of this occurring is (1-p)P

n
P. 

Now, when do we reject an hypothesis? We reject the hypothesis UBxB (“p = x”) if and only if 
q(UBxB)<qM(UBxB), or, in this case, (1-x)P

n
P<q; that is, John will fail to reject only such x’s such 

that (1-x)P

n
P≥q, or that 1-x≥qP

1/n
P, or -x≥qP

1/n
P-1, or x≤1-qP

1/n
P. That is, John accepts that the real p is 

in the range (0,1-qP

1/n
P]; as n increases, and qP

1/n
P1 (since 0<q<1), this range becomes smaller 

and smaller. 

 

STEP 2: EVALUATING E(X”) 

So far so good. However, John has no information at all about E(X”), and therefore cannot 
limit E(X) in any way, even with this information about p.  

The problem is this. Consider evaluating E(X”) given the outcomes, E(XBnB)—or, more 
precisely, E(XBnB’). First, what are the options John has? John is interested in is as before. John 
is interested in whether or not the real E(X) (=(1-p)E(X’)+pE(X)) is close, or not close, to the 
observed E(XBnB) (=E(X’BnB)). This means that John can use the same options as before: namely, 
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for a given LB0B which is large in relation to the standard error of the sample, John has UP

-
P = 

“E(X”)<E(XBnB)-LB0B”; UP

+
P = “E(X”)>E(XBnB)+LB0B”, and UBxB = “E(X”) = x” for E(XBnB)-

LB0B≤x≤E(XBnB)+LB0B. 

John is interested in is as before. John is interested in whether or not the real E(X”) is close, 
or not close, to the observed E(XBn B). This means that John can use the same options as before: 
namely, for a given LB0B which is large in relation to the standard error of the sample, John has 
UP

-
P = “E(X)<E(XBnB)-LB0B”; UP

+
P =   have  M(UP

+
P) = M(UP

-
P) =  p B0B; m≡(1-2p B0B)/2LB0B over the range 

[E(XBnB)-LB0B, E(XBnB)+LB0B]. 

Consider, however, what the allowable probability functions about E(X) being in any range 
are. But John has no data at all—no observations—about X”, only about X’. So there is no 
way to evaluate E(X”). To put it differently, since there are no observations, any probability 
density function from -∞ to +∞ is in John’s QBJohn,t0B. This, of course, is always the case when 
one has literally no observations of the parameter. 

Consider now the situation. For any given density function f, UBxB in [E(XBnB)-LB0B, E(XBnB)+LB0B] 
will be rejected if and only if the density function f(x)<q(1-2pB0B)/2LB0B; for UP

-
P B Band UP

+
P, if and 

only if ∫B-∞ to E(Xn)-L0Bf(z)dz <qp B0B or ∫BE(Xn)+L0 to +∞ Bf(z)dz <qpB0B, respectively.  

But since all probability functions, all f’s, that is, are allowed, for every one of the hypotheses, 
UP

-
P and UP

+
P included, there are some probability functions that recommend rejecting it and 

some that recommend accepting it. In particular, there is always some probability functions 
(for example, f≡the M-function itself!) that will recommend rejecting no hypothesis. 

What to do? We can use Levi’s rule of ties. Since every possible strategy from rejecting no 
hypothesis to rejecting all but one (it is impossible to reject all of them, as seen above, since 
that means adding an inconsistency to KBJohn,t0B, which is never recommended, see Levi, 1980 
about “deliberate inductive inference”, Ch. 5), that is, they are all E-admissible, the rule of 
ties recommends using the disjunction of all of them—the hypothesis “reject nothing”—as 
long as it is “reasonable” (e.g., itself at least E-admissible.) This is the case, as we’ve just 
seen.  

Finally, there is the case of iteration. But in this case, since nothing is rejected, there is no 
iteration—the first action (“add nothing”) is the final one that is recommended to John. There 
is no reason to conditionalize the probability functions or M, since nothing is added to KBJohn,t0B 
in the first place.  

So the recommended strategy is: 

 

John’s Recommended Inductive Inference for E(X”): Remain in complete suspense about 
E(X”); accept nothing stronger than “E(X”)∈� ”. 

 



 

 

33 

STEP 3: EVALUATING E(X) = (1-p)E(X’)+pE(X”) 

Now John is finally ready to evalute E(X) itself. Could, perhaps, the fact that at least p can be 
bounded by the agent be of use? The answer is negative. For if there is no information at all 
about E(X”), then there is similarly no information about (1-p)E(X’)+pE(X”).  

The reason is that the evaluating of E(X”) is undounded—it can be anything as far as John is 
concerned—so that the fact that it is multiplied by a small p is of no consequence. John 
cannot exclude the possibility that E(X”)=1,000,000p, or 10P

100
Pp, for that matter.  

To put it somewhat more formally, consider any probability function g which supposedly 
gives us the definition of how E(X) = (1-p)E(X’)+pE(X”) is distributed around � . It is easy to 
find some other probability function, g”, such that if g” is the distribution of E(X”) in � , then 
g is that of E(X). The fact that p is small doesn’t mean that E(X) must be small; if g (say) says 
that the likelihood of the average of E(X) is distributed around 1,000,000, just choose a g” 
where the likelihood is that E(X”) is distributed around 1,000,000/p.  

So John’s possible functions for the likelihood of E(X) being anywhere in �  is still all of the 
possib le probability functions. And for the same reasons as above: 

 

John’s Recommended Inductive Inference for E(X): Remain in complete suspense about 
E(X); accept nothing stronger than “E(X)∈� ”. 

 

In conclusion:  even if we know that a certain generator is a type 3  distribution, before a 
catastrophic event occurs we cannot say anything about the difference between the observed 
E(XBnB) and E(X), the observed Var(XBnB) and Var(X), or any other observed moment and the 
“real” one. Before such an event occurs, extrapolating from past data to future behavior of 
such a system is worthless.  

Here we see that the mathematical information is necessary for reaching the epistemological 
conclusion. To conclude that the future is like the past we must know that the mathematical 
equality E(X)~E(XBnB) (and the same with other moments) will hold. If we know that this 
mathematical relations does not hold, then naturally we cannot make any epistemological 
conclusion about the future based on the past in that case. 

  

TYPE #4 GENERATORS – PART 1 

Things are even worse with type 4 generators, for obvious reasons.  If an angel tells us that a 
certain generator is a type 4 one (Pareto-Lévy-Mandelbrot), we know that no relation between 
the observed moments E(XBnB), Var(XBnB), etc. and the “real” moments of the generator exist – 
for the very good reason that there are no such moments.  
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TYPE #3 AND #4  GENERATORS – PART 2 

But things are even worse than that. We have just seen that if we know that the generator is of 
type 1 or type 2, we can rely on the observed moments to be close to the “real” moments.  We 
also showed that if we know that the generator is of type 3 or type 4, the observed moments 
(at least before a catastrophic “black swan” event occurs) are worthless in finding the values 
of the real moments. 

But all these scenarios assume that we know what type the generator is.  Suppose we don’t 
know what it is, and want to see if the data helps us figure this out? In that case, the 
mathematical equality between the observed and actual moments, even if it holds (even if the 
generator, that is, is in fact of type #1 or #2), might not be enough to reach any 
epistemological conclusions about the similarity of the past to the future. The mathematical 
equality is necessary, but not sufficient.  

Consider the following situation.  Suppose an angel tells you that a certain generator is either 
type 2 (Normal) or type 3 distribution (a mixed combination of Normal and Poisson).  
Consider the data xB1B, xB2B, … xBnB.  As long as no catastrophic “Poisson event” had actually 
occurred, the data would be indistinguishable between type 2 and type 3 generators, since all 
the outcomes of the type 3 generator would still be due to the “Normal” part of its 
distribution.  We will not be able to tell due to anything in the data whether it is one or the 
other.  

More generally, suppose that an angel tells us that a certain outcome might be due to a 
generator of type 3 or 4, as well as a type 1 or 2 generators. Does any amount of data tell us 
anything about whether or not this is true, before a “black swan” event happens?  No, since 
until a low-probability catastrophe actually occurs, if the generator is in fact of type 3 or 4, the 
data would look indistinguishable from that of a generator of type 1 or 2, as we’ve just seen. 

So if we don’t know that the generator is not type 3 or 4, then our data is just as worthless in 
assessing the future behavior of the generator as if we knew that it is type 3 or 4.  This is not 
because E(XBnB), Var(XBnB) and so on must be far from the “real” E(X), Var(X), etc. (if they 
exist), but because we can never tell from the data whether they are or not before a 
catastrophe happens. And if we don’t know the moments, ipso facto we don’t know anything 
about the probabilities of the generator’s outcomes, which depend for their calculation on 
these moments.  We cannot tell anything about the risk of any future outcome.  We are in a 
situation of decision making under uncertainty.   

In summary, for the epistemic inductive inference from the past outcomes to the future ones 
to be worthless, we need not know that the generator is of the “dangerous” type: it need not be 
the case that E(X)≠E(XBnB) (or the same for the other moments).  It is enough not to know that 
it is not of that type.  In such a situation, a “black swan” could surprise it at any moment – and 
we wouldn’t be able to tell whether it would happen or not until after the fact. The 
mathematical equality E(X)=E(XBnB) is of no use to us if we cannot know in advance that it 
holds before a catastrophic event occurs. 
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COULD SUCH GENERATORS EXIST? 

This entire discussion would have remained completely theoretical if it was not the case that 
the situations risk managers deal with could involve the “bad” types of the generators – that 
is, unless epistemic assumption #4 above holds.  

We have seen above that many economists dismiss the possibility of assumption #4. we claim 
that, unfortunately, in economical situations generators of this type can occur.  Physical 
systems (as Mandelbrot says—add references) must be of the “benign” type – type 1 or 2, or, 
more specifically, of type 1 (a “bounded” generator).  The laws of physics bound their values 
– specifically, the amount of energy in the system, the entropy of the system, and other such 
physical characteristics cannot move beyond a certain range (add other references except for 
Mandelbrot, e.g., his sources.).   

Social systems, as well, are bounded.  If nothing else, there is a lower bound for the “worse 
possible outcome” – namely, death.  This is not because nothing can be worse from the 
individual’s point of view than his or her own death, but because one can (almost?) always 
avoid such circumstances by choosing suicide instead. (Is this the case??? Perhaps erase 
this??? What about “infinite badness” like Hobbes believed???) 

In physical and social systems, therefore, it is often the case that we can tell in advance, due to 
external, purely deductive reasons, that the “generator” must be bounded and therefore 
(relatively) benign; we can therefore use the past data for inductive inference about the future, 
as we seen above. 

In many financial systems, however, this is not the case (references?).  There are potential 
events in many such systems that would cause losses (or gains) that are, in theory, unbounded.  
To convince oneself of this, one need only look at a simple “option”:  the possibility exists of 
losing an infinite amount of money combined with the fact that such probability may remain 
unknown by us. (References.)    

This is not to say, of course, that death is somehow “better” than losing a lot of money, or that 
gaining or losing an infinite (or very, very, large) amount of money is physically possible.  
The point is, rather, that in the case of a physical system one knows that one can describe the 
system with a bounded (or, at worse, a compact-supported) generator, while if we look at a 
financial system this cannot be promised. (Remove this paragraph, perhaps? Or give more 
references?) 
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THE RECOMMENDED STRATEGY IN SUCH SITUATIONS, AND “LONG-TERM 
CAPITAL” REVISITED 

The conclusion of this epistemological excursion is as follows: in such situations, we are in an 
essentially “uncertain” situation.   

If we must make decisions in such a situation, our best bet is to use a strategy suited to 
“uncertainty”. Minmax (or similar strategies) will not work, because of unboundedness. 
(references to the strategies of uncertainty—perhaps again?)  “Forcing” oneself to use a 
specific probability value will lead to grief: it is useless to protect oneself against the risk of a 
certain outcomes when you really have no reason to give it any specific probability. 

Note in particular that the well-known device of taking “safety margins” will not work.  
Suppose that one is willing to take a one-in-a-million risk of bankruptcy, but – in order to 
“hedge” one’s bets – only makes trades that (according to his or her calculations) have a one-
in-a-trillion chance of going so badly as to lead into bankruptcy.  Will taking such a ludicrous 
“safety margin” – a factor of 1,000,000 – help the risk manager avoid bankruptcy in such 
situations?   

The answer is no.  Taking such “safety measures” is a reasonable device if one knows that the 
generator if of one of the “benign” types, e.g. type 1 or 2, and therefore one knows that one is 
justified in making assumptions about the probabilities of events happening in the future 
using the observed parameters as approximations for the actual parameters of the generator, 
but might not be completely sure about the exact values the parameters should have.  In other 
work, this would work in cases where one knows one can safely describe the situation as one 
of decision making under risk, although one is not sure exactly what risk.   

In a situation where the generator might be of type 3 or 4, however, one doesn’t simply have a 
vague idea of what the risk is; one has no idea what it is, and cannot assign any value to it.  
Taking only “trillion-to-1” bets against bankruptcy is worthless in such a situation since the 
assessment of the risk of a certain trade as trillion-to-1 is worthless in the first place.  There is 
no ‘there’ there:  the calculated “million to one safety margin” doesn’t correspond to anything 
in reality. (Add something or is this ehough?) 

We have no real base to give credence to this estimation; the relaxing number “a trillion to 1” 
has only psychological significance in such a situation – as the occurrence of the “impossible” 
10-σ event in the case of “Long Term Capital” shows. It is not as if a 10-σ event actually 
occurred. Rather, the belief that it is a 10-σ event was based on the unjustified conclusion that 
the generator involved is of the benign type in the first place.   

Therefore, the risk managers did not consider the possibility of the generator being of the 
third or fourth type, where events that would be 10-σ events if the generator were of the 
benign type, actually occur far more frequently. 

Our only recourse in such situations is Popper’s solution:  to wait for the “black swan”, and 
make sure that we are not destroyed by it. (Add more about Popper here—the falsification 
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requirement. I am not sure that this is really our “only recourse”. Again, look at strategies 
under uncertainty for detail—P.) 

  

SUMMARY 

In this chapter, we have tried to show the essential problem of risk management is forcing 
situations of decision making under uncertainty into the straightjacket of decision making 
under risk.   

We showed this in a few steps: :   

First, we showed that certain random generators have a “bad” relation between their observed 
moments and their actual moments.   This is a purely mathematical issue. 

Second, we have shown if one’s background information satisfies certain conditions, then if 
such generators are not ruled out, the mere possibility that they are the generator one is 
dealing with sabotages any attempt to assign specific values to the “real” moments of the 
generator, due to the “black swan” problem – the possibility of rare extreme events which 
have a large influence on the moments. This is an epistemological issue.  

Third, this forces us This  forces us to conclude we are in a situation of decision making under 
uncertainty.  This is a decision-theoretic matter.  

Fourth, we showed that, in fact, the situation risk managers deal with are precisely those 
where such generators cannot be ruled out. This is a scientific issue: it has to do with the 
different nature of physical and economic systems.  

Fifth closely related to the third issue,  we showed that common “avoidance” procedures – 
taking only what seems like “very low” risks – will not work, since the implicitly assume the 
situation is one of decision making under risk in the first place.  Even “usually” procedures 
for decisiom making under uncertainty – minmax, minamx regret, etc. – will not work, since 
the “bad” generators are not bound.  

Finally, we show that in such situation, the only thing we can do is protect ourselves against 
the black swan –and recognize that we may not know much about it. This is the (type of 
strategy) strategy, which is applicable to this sigtuation. 
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